class Generator(nn.Module): def __init__(self, n_residual_blocks, upsample_factor): super(Generator, self).__init__() self.n_residual_blocks = n_residual_blocks self.upsample_factor = upsample_factor self.conv1 = nn.Conv2d(3, 64, 9, stride=1, padding=4) for i in range(self.n_residual_blocks): self.add_module('residual_block' + str(i+1), residualBlock()) self.conv2 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) for i in range(self.upsample_factor/2): self.add_module('upsample' + str(i+1), upsampleBlock(64, 256)) self.conv3 = nn.Conv2d(64, 3, 9, stride=1, padding=4) def forward(self, x): x = swish(self.conv1(x)) y = x.clone() for i in range(self.n_residual_blocks): y = self.__getattr__('residual_block' + str(i+1))(y) x = self.bn2(self.conv2(y)) + x for i in range(self.upsample_factor/2): x = self.__getattr__('upsample' + str(i+1))(x) return self.conv3(x)
时间: 2024-04-19 18:26:52 浏览: 167
这是一个生成器模型的代码,用于图像超分辨率重建任务。该模型使用了残差块和上采样块来增加分辨率。
在初始化函数中,我们定义了模型的结构。首先是一个卷积层(conv1),将输入通道数为3的图像进行卷积操作。然后使用循环为模型添加了n_residual_blocks个残差块(residualBlock)。接着是第二个卷积层(conv2),再加上批归一化层(bn2)。随后,使用循环为模型添加了upsample_factor/2个上采样块(upsampleBlock)。最后,通过卷积层(conv3)生成输出图像。
在前向传播函数中,我们首先对输入图像进行卷积操作,并使用Swish激活函数。然后,将输入图像克隆给变量y,并通过循环使用残差块对y进行处理。接着,将y与经过卷积和批归一化操作的x相加得到新的x。最后,通过循环使用上采样块对x进行处理,并返回通过卷积操作生成的输出图像。
阅读全文