什么是支持向量机分类器?
时间: 2024-01-11 12:22:41 浏览: 123
Python 支持向量机分类器的实现
5星 · 资源好评率100%
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类和回归问题。它的基本思想是找到一个最优的超平面,将不同类别的样本分开,并且使得离超平面最近的样本点到该超平面的距离最大化。
在二分类问题中,SVM通过寻找一个最优的超平面来将两个不同类别的样本点分开。这个超平面可以被看作是一个决策边界,将样本点划分为两个类别。而支持向量则是离超平面最近的样本点,它们决定了超平面的位置和方向。
SVM的优势在于它能够处理高维数据,并且对于小样本数据集也有较好的表现。此外,SVM还可以通过核函数将非线性问题转化为线性问题,从而提高分类的准确性。
总结一下,支持向量机分类器是一种基于最优超平面的机器学习算法,用于解决分类问题,并且能够处理高维和非线性数据。
阅读全文