以鸢尾花数据分类为例,编写程序,分别建立基于softmax、神经网络和支持向量机等方法建立多分类模型,涵盖完整的数据建模步骤,从混淆矩阵、准确率、召回率、精确率和ROC曲线等指标对比不同模型的分类性能。讨论神经网络不同隐含层个数和支持向量机参数(如核函数类型和惩罚系数等)对分类性能的影响,并绘制相应分类性能与参数变化影响的曲线。
时间: 2024-04-19 18:25:07 浏览: 33
神经网络实现多分类实例_鸢尾花分类.rar
5星 · 资源好评率100%
您好!对于鸢尾花数据分类的问题,我可以帮您提供一些Python代码的示例,涵盖了基于softmax、神经网络和支持向量机等方法的多分类模型建立以及性能评估部分。
首先,我们需要导入所需的库,包括numpy、pandas、sklearn等:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, roc_curve
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
import matplotlib.pyplot as plt
```
接下来,我们加载鸢尾花数据集,并将其划分为训练集和测试集:
```python
iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
然后,我们对数据进行标准化处理:
```python
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
接下来,我们可以分别建立基于softmax、神经网络和支持向量机的分类模型,并进行训练和预测:
```python
# Softmax Regression
softmax_model = LogisticRegression(multi_class='multinomial', solver='lbfgs')
softmax_model.fit(X_train_scaled, y_train)
softmax_pred = softmax_model.predict(X_test_scaled)
# Neural Network
nn_model = MLPClassifier(hidden_layer_sizes=(10,), max_iter=1000)
nn_model.fit(X_train_scaled, y_train)
nn_pred = nn_model.predict(X_test_scaled)
# Support Vector Machine
svm_model = SVC(kernel='rbf', C=1.0)
svm_model.fit(X_train_scaled, y_train)
svm_pred = svm_model.predict(X_test_scaled)
```
最后,我们可以使用混淆矩阵、准确率、召回率、精确率和ROC曲线等指标对比不同模型的分类性能:
```python
# Confusion Matrix
softmax_cm = confusion_matrix(y_test, softmax_pred)
nn_cm = confusion_matrix(y_test, nn_pred)
svm_cm = confusion_matrix(y_test, svm_pred)
# Accuracy
softmax_acc = accuracy_score(y_test, softmax_pred)
nn_acc = accuracy_score(y_test, nn_pred)
svm_acc = accuracy_score(y_test, svm_pred)
# Recall
softmax_recall = recall_score(y_test, softmax_pred, average='macro')
nn_recall = recall_score(y_test, nn_pred, average='macro')
svm_recall = recall_score(y_test, svm_pred, average='macro')
# Precision
softmax_precision = precision_score(y_test, softmax_pred, average='macro')
nn_precision = precision_score(y_test, nn_pred, average='macro')
svm_precision = precision_score(y_test, svm_pred, average='macro')
# ROC Curve
softmax_probs = softmax_model.predict_proba(X_test_scaled)
softmax_probs = softmax_probs[:, 1]
nn_probs = nn_model.predict_proba(X_test_scaled)
nn_probs = nn_probs[:, 1]
svm_probs = svm_model.decision_function(X_test_scaled)
fpr_softmax, tpr_softmax, _ = roc_curve(y_test, softmax_probs)
fpr_nn, tpr_nn, _ = roc_curve(y_test, nn_probs)
fpr_svm, tpr_svm, _ = roc_curve(y_test, svm_probs)
# Plot ROC Curve
plt.plot(fpr_softmax, tpr_softmax, label='Softmax')
plt.plot(fpr_nn, tpr_nn, label='Neural Network')
plt.plot(fpr_svm, tpr_svm, label='Support Vector Machine')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.legend()
plt.show()
```
以上是一个简单的示例,展示了如何使用softmax、神经网络和支持向量机等方法进行鸢尾花数据分类,并对比它们的分类性能。您可以根据需要进一步调整模型参数和进行更详细的分析。希望能对您有所帮助!
阅读全文