以鸢尾花数据分类为例,编写程序,分别建立基于softmax、神经网络和支持向量机等方法建立多分类模型,涵盖完整的数据建模步骤,从混淆矩阵、准确率、召回率、精确率和ROC曲线等指标对比不同模型的分类性能。讨论神经网络不同隐含层个数和支持向量机参数(如核函数类型和惩罚系数等)对分类性能的影响,并绘制相应分类性能与参数变化影响的曲线。

时间: 2024-04-19 18:25:07 浏览: 33
RAR

神经网络实现多分类实例_鸢尾花分类.rar

star5星 · 资源好评率100%
您好!对于鸢尾花数据分类的问题,我可以帮您提供一些Python代码的示例,涵盖了基于softmax、神经网络和支持向量机等方法的多分类模型建立以及性能评估部分。 首先,我们需要导入所需的库,包括numpy、pandas、sklearn等: ```python import numpy as np import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, roc_curve from sklearn.linear_model import LogisticRegression from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC import matplotlib.pyplot as plt ``` 接下来,我们加载鸢尾花数据集,并将其划分为训练集和测试集: ```python iris = load_iris() X = iris.data y = iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 然后,我们对数据进行标准化处理: ```python scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) ``` 接下来,我们可以分别建立基于softmax、神经网络和支持向量机的分类模型,并进行训练和预测: ```python # Softmax Regression softmax_model = LogisticRegression(multi_class='multinomial', solver='lbfgs') softmax_model.fit(X_train_scaled, y_train) softmax_pred = softmax_model.predict(X_test_scaled) # Neural Network nn_model = MLPClassifier(hidden_layer_sizes=(10,), max_iter=1000) nn_model.fit(X_train_scaled, y_train) nn_pred = nn_model.predict(X_test_scaled) # Support Vector Machine svm_model = SVC(kernel='rbf', C=1.0) svm_model.fit(X_train_scaled, y_train) svm_pred = svm_model.predict(X_test_scaled) ``` 最后,我们可以使用混淆矩阵、准确率、召回率、精确率和ROC曲线等指标对比不同模型的分类性能: ```python # Confusion Matrix softmax_cm = confusion_matrix(y_test, softmax_pred) nn_cm = confusion_matrix(y_test, nn_pred) svm_cm = confusion_matrix(y_test, svm_pred) # Accuracy softmax_acc = accuracy_score(y_test, softmax_pred) nn_acc = accuracy_score(y_test, nn_pred) svm_acc = accuracy_score(y_test, svm_pred) # Recall softmax_recall = recall_score(y_test, softmax_pred, average='macro') nn_recall = recall_score(y_test, nn_pred, average='macro') svm_recall = recall_score(y_test, svm_pred, average='macro') # Precision softmax_precision = precision_score(y_test, softmax_pred, average='macro') nn_precision = precision_score(y_test, nn_pred, average='macro') svm_precision = precision_score(y_test, svm_pred, average='macro') # ROC Curve softmax_probs = softmax_model.predict_proba(X_test_scaled) softmax_probs = softmax_probs[:, 1] nn_probs = nn_model.predict_proba(X_test_scaled) nn_probs = nn_probs[:, 1] svm_probs = svm_model.decision_function(X_test_scaled) fpr_softmax, tpr_softmax, _ = roc_curve(y_test, softmax_probs) fpr_nn, tpr_nn, _ = roc_curve(y_test, nn_probs) fpr_svm, tpr_svm, _ = roc_curve(y_test, svm_probs) # Plot ROC Curve plt.plot(fpr_softmax, tpr_softmax, label='Softmax') plt.plot(fpr_nn, tpr_nn, label='Neural Network') plt.plot(fpr_svm, tpr_svm, label='Support Vector Machine') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.legend() plt.show() ``` 以上是一个简单的示例,展示了如何使用softmax、神经网络和支持向量机等方法进行鸢尾花数据分类,并对比它们的分类性能。您可以根据需要进一步调整模型参数和进行更详细的分析。希望能对您有所帮助!
阅读全文

相关推荐

最新推荐

recommend-type

基于卷积神经网络VGG16模型花卉分类与手势识别.docx

卷积神经网络(CNN)是深度学习领域中的关键模型,尤其在图像识别和分类任务上表现出色。VGG16模型是由牛津大学视觉几何组(Visual Geometry Group)开发的,是2014年ImageNet挑战赛的有力竞争者。它的主要特点是...
recommend-type

Python实现Keras搭建神经网络训练分类模型教程

总结一下,本教程涵盖了使用Python和Keras构建神经网络分类模型的基本步骤,包括数据预处理、模型构建、编译和训练。这个模型可以作为进一步探索深度学习和神经网络的基础,你可以根据实际需求调整网络结构、优化器...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

PyTorch: Softmax多分类实战操作

通过这样的流程,我们可以利用PyTorch实现一个基于Softmax的多分类模型,对MNIST数据集进行手写数字识别。这个过程不仅展示了Softmax在多分类中的应用,也演示了如何在PyTorch框架下构建、训练和评估深度学习模型。
recommend-type

深度信念网络分类算法python程序.docx

深度信念网络分类算法Python程序是基于RBM和BP算法的深度学习模型,可以学习数据的分布式表示,然后使用BP算法对模型进行微调拟合,以提高模型的分类性能。该算法可以应用于图像分类、自然语言处理等领域。 知识点...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。