R语言格兰杰因果检验quantile-on-quantile approach
时间: 2024-05-29 21:06:13 浏览: 160
格兰杰因果matlab代码-ECA:探索性因果分析
格兰杰因果检验是一种用于分析时间序列数据中因果关系的方法。R语言中可以使用quantile-on-quantile approach进行格兰杰因果检验。该方法基于分位数回归分析,通过对两个时间序列的分位数进行回归,来判断其中一个序列是否对另一个序列有因果影响。以下是一个使用quantile-on-quantile approach进行格兰杰因果检验的例子[^3]:
```R
library(quantreg)
library(ggplot2)
# 生成两个时间序列数据
set.seed(123)
x <- arima.sim(model = list(ar = 0.7), n = 100)
y <- arima.sim(model = list(ar = 0.5), n = 100)
# 将数据分为训练集和测试集
train.x <- x[1:80]
test.x <- x[81:100]
train.y <- y[1:80]
test.y <- y[81:100]
# 使用quantile-on-quantile approach进行格兰杰因果检验
g.fit <- rq(test.y ~ test.x, tau = 0.9)
g.coef <- coef(g.fit)
# 绘制分位数回归图像
ggplot(data.frame(x = test.x, y = test.y), aes(x, y)) +
geom_point() +
geom_quantreg(mapping = aes(color = "quantile regression"),
formula = y ~ x, tau = 0.9, size = 1.2) +
geom_smooth(mapping = aes(color = "lowess"), method = "loess", size = 1.2) +
geom_abline(mapping = aes(intercept = g.coef, slope = g.coef,
color = "quantile-on-quantile"), size = 1.2) +
scale_color_manual(name = "Regression",
values = c("quantile regression" = "black",
"lowess" = "gray40",
"quantile-on-quantile" = "blue"),
labels = c("Quantile regression", "Lowess", "Quantile-on-quantile")) +
theme_minimal()
```
上述代码中,首先生成了两个时间序列x和y,然后将数据分为训练集和测试集。接着,使用`rq()`函数进行quantile-on-quantile approach格兰杰因果检验,其中`tau`参数为分位数回归的分位数。最后,通过`ggplot2`包绘制了分位数回归图像,并用蓝色直线表示quantile-on-quantile approach的结果。
阅读全文