fwrite("SNAKE",5,1,fp);

时间: 2024-04-13 15:28:08 浏览: 17
这是一个C语言中的函数,用于将数据写入到文件中。函数原型为:fwrite(buffer, size, count, fp)。其中,buffer为存储要写入的数据的缓冲区,size为每个数据块的大小,count为要写入的数据块数量,fp为文件指针。该函数返回实际写入的数据块数量。 在你提供的例子中,fwrite("SNAKE", 5, 1, fp) 的意思是将字符串 "SNAKE" 写入到文件中。每个数据块的大小为 5(即每个字符占用一个字节),要写入的数据块数量为 1。文件指针 fp 指向要写入的文件。 请注意,为了使用 fwrite() 函数,你需要先打开一个文件并获得其文件指针 fp。可以使用 fopen() 函数来打开文件。例如: ``` FILE *fp = fopen("file.txt", "w"); if (fp == NULL) { // 处理文件打开失败的情况 } fwrite("SNAKE", 5, 1, fp); fclose(fp); ``` 这段代码将会把字符串 "SNAKE" 写入到名为 "file.txt" 的文件中,并且关闭文件。
相关问题

c语言fwrite函数返回-1

fwrite函数是C语言标准库中的一个输出函数,功能是将指定大小的数据写入文件中。如果函数返回-1,通常代表输出失败,存在多种可能的原因。 1.文件无法打开:如果在打开文件时发生错误,如文件路径不存在或文件权限不足,则fwrite函数返回-1。 2.磁盘空间不足:在写入文件时,磁盘空间不足也会导致fwrite函数返回-1。 3.文件指针指向文件结尾:如果文件指针指向了文件的结尾,而又要往里面写入数据,则fwrite函数返回-1。 4.写入数据过大:如果一次写入的数据量超过了系统对程序所分配的缓存大小,则fwrite函数也会返回-1。 5.其他错误:还有其他可能导致fwrite函数返回-1的原因,如文件损坏、文件系统错误等。 无论是哪种情况,只要fwrite函数返回-1,就代表输出失败。为了解决这个问题,需要先确定出错的原因,然后进行相应的处理,如打开文件失败可以重新检查路径或权限,磁盘空间不足可以删除部分文件以腾出空间,文件指针指向文件结尾则需要重置文件指针等。

fwrite(&stu, LEN, 1, fp);

`fwrite(&stu, LEN, 1, fp)` 是一个C语言标准库函数,用于将数据写入文件中。 具体解释如下: - `&stu` 是指向要写入的数据的指针,`LEN` 是每个数据块的字节数,`1` 是要写入的数据块的个数,`fp` 是文件指针。 - `fwrite` 函数会将数据块写入到文件中,并返回成功写入的数据块个数。在这个例子中,如果成功写入了一个数据块,则返回值为 `1`,否则返回值为 `0`。 因此,这段代码会将存储在 `stu` 变量中的数据写入到文件中。每个数据块的大小由 `LEN` 指定。 需要注意的是,`fwrite` 函数会按照二进制形式写入数据到文件中。如果文件不存在,则会创建一个新文件。如果文件已存在,则会在文件末尾追加写入数据。 另外,`fwrite` 函数返回值为成功写入的数据块个数。可以根据返回值来判断是否成功写入了指定数量的数据块。

相关推荐

常用的数据类型有字符型(char 型)、短整型(short 型)、整型(int 型)、长整型(long 型)、拓展长整型(long long 型)、单精度浮点型(float 型)、双精度浮点型(double 型)。问题围绕着数据类型与二进制文件展开。现有一个二进制文件,文件名为dict.dic,生成这个文件的C语言代码大概是这样的: 变量如下: char a,aa[5];//注意这里数组aa为正常使用的字符串,所以会包含字符'\0',它不需要输出 short b,bb[5]; int c,cc[5]; long d,dd[5]; long long e,ee[5]; float g,gg[5]; double h,hh[5]; int i ; 写入的代码段是这样: fwrite(&a,sizeof(a),1,fp); fwrite(&b,sizeof(b),1,fp); fwrite(&c,sizeof(c),1,fp); fwrite(&d,sizeof(d),1,fp); fwrite(&e,sizeof(e),1,fp); fwrite(&g,sizeof(g),1,fp); fwrite(&h,sizeof(h),1,fp); fwrite(aa,sizeof(a),5,fp); fwrite(bb,sizeof(b),5,fp); fwrite(cc,sizeof(c),5,fp); fwrite(dd,sizeof(d),5,fp); fwrite(ee,sizeof(e),5,fp); fwrite(gg,sizeof(g),5,fp); fwrite(hh,sizeof(h),5,fp); 这个代码段被连续执行了5次。当然每次写入的数据是不同的。 你的任务是从dict.dic中按照输入的顺序,读出7种单独变量,分别存到对应类型的变量中,假设为a、b、c、d、e、g、h。再从该文件中读出7个长度为5的数组,分别存到aa[5]、bb[5]、cc[5]、dd[5]、ee[5]、gg[5]、hh[5]中。最后将它们的值全部输出到屏幕上。 注意,所有变量均不会超过其存储范围。 内容提示:在本题对文件的操作内容中,会用到C语言文件操作函数,其打开文件的方式,如下: 1.FILE *fp=fopen("file.dat","rb");//"rb"为以只读方式打开二进制文件。 2.fread的样例代码: #include<stdio.h> int main() { int c,cc[5]={0}; FILE *fp=fopen("file.dat","rb"); fread(&c,sizeof(int),1,fp); //从fp指向的文件中读出一个整型变量 fread(cc,sizeof(int),5,fp); //从fp指向的文件中读出一个长度为5的整型数组。 fclose(fp); return 0; }

最新推荐

recommend-type

WPM3012-VB一款SOT23封装P-Channel场效应MOS管

SOT23;P—Channel沟道,-30V;-5.6A;RDS(ON)=47mΩ@VGS=10V,VGS=20V;Vth=-1V;
recommend-type

智慧医院管理系统解决方案双份文档.pptx

智慧医院管理系统解决方案双份文档.pptx
recommend-type

20230226-安信证券-电子行业:英伟达宣布加码AI云服务,生成式AI应用有望加速铺开.pdf

20230226-安信证券-电子行业:英伟达宣布加码AI云服务,生成式AI应用有望加速铺开
recommend-type

1111111111111111111111111111111111111111

11111111111111111111111111111111111111
recommend-type

共轴极紫外投影光刻物镜设计研究

"音视频-编解码-共轴极紫外投影光刻物镜设计研究.pdf" 这篇博士学位论文详细探讨了共轴极紫外投影光刻物镜的设计研究,这是音视频领域的一个细分方向,与信息技术中的高级光学工程密切相关。作者刘飞在导师李艳秋教授的指导下,对这一前沿技术进行了深入研究,旨在为我国半导体制造设备的发展提供关键技术支持。 极紫外(EUV)光刻技术是当前微电子制造业中的热点,被视为下一代主流的光刻技术。这种技术的关键在于其投影曝光系统,特别是投影物镜和照明系统的设计。论文中,作者提出了创新的初始结构设计方法,这为构建高性能的EUV光刻投影物镜奠定了基础。非球面结构的成像系统优化是另一个核心议题,通过这种方法,可以提高光刻系统的分辨率和成像质量,达到接近衍射极限的效果。 此外,论文还详细阐述了极紫外光刻照明系统的初始建模和优化策略。照明系统的优化对于确保光刻过程的精确性和一致性至关重要,能够减少缺陷,提高晶圆上的图案质量。作者使用建立的模型和优化算法,设计出多套EUV光刻机的成像系统,并且经过优化后的系统展现出优秀的分辨率和成像性能。 最后,作者在论文中做出了研究成果声明,保证了所有内容的原创性,并同意北京理工大学根据相关规定使用和分享学位论文。这表明,该研究不仅代表了个人的学术成就,也符合学术界的伦理规范,有助于推动相关领域的知识传播和进步。 这篇论文深入研究了共轴极紫外投影光刻物镜的设计,对于提升我国半导体制造技术,尤其是光刻技术的自主研发能力具有重大意义。其内容涵盖的非球面成像系统优化、EUV照明系统建模与优化等,都是目前微电子制造领域亟待解决的关键问题。这些研究成果不仅为实际的光刻设备开发提供了理论基础,也为未来的科研工作提供了新的思路和方法。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

泊松分布:离散分布中的典型代表,探索泊松分布的应用场景

![泊松分布:离散分布中的典型代表,探索泊松分布的应用场景](https://img-blog.csdnimg.cn/20190802094932661.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3ltaHVh,size_16,color_FFFFFF,t_70) # 1. 泊松分布的理论基础 泊松分布是一种离散概率分布,用于描述在固定时间或空间间隔内发生的随机事件的数量。它以法国数学家西梅翁·德尼·泊松(Siméon Denis
recommend-type

``` if build_id then -- 单个屋子 else -- 所有屋子 end ```

在你的代码片段中,`build_id` 的存在与否决定了执行不同的逻辑。如果 `build_id` 为真(非空或非零),则执行针对单个屋子的代码;否则,执行针对所有屋子的代码。这种结构在 Lua 中已经相对简洁,但为了提高可读性和潜在的性能优化,你可以考虑以下几点: 1. **使用更明确的条件语句**:可以使用 `if build_id ~= nil` 替换 `if build_id then`,因为 `nil` 在 Lua 中被视为 `false`。 2. **逻辑封装**:如果两个分支的代码复杂度相当,可以考虑将它们抽象为函数,这样更易于维护和复用。 3. **避免不必要的布尔转换*
recommend-type

基于GIS的通信管线管理系统构建与音视频编解码技术应用

音视频编解码在基于GIS的通信管线管理系统中的应用 音视频编解码技术在当前的通信技术中扮演着非常重要的角色,特别是在基于GIS的通信管线管理系统中。随着通信技术的快速发展和中国移动通信资源的建设范围不断扩大,管线资源已经成为电信运营商资源的核心之一。 在当前的通信业务中,管线资源是不可或缺的一部分,因为现有的通信业务都是建立在管线资源之上的。随着移动、电信和联通三大运营商之间的竞争日益激烈,如何高效地掌握和利用管线资源已经成为运营商的一致认识。然而,大多数的资源运营商都将资源反映在图纸和电子文件中,管理非常耗时。同时,搜索也非常不方便,当遇到大规模的通信事故时,无法找到相应的图纸,浪费了大量的时间,给运营商造成了巨大的损失。 此外,一些国家的管线资源系统也存在许多问题,如查询基本数据非常困难,新项目的建设和迁移非常困难。因此,建立一个基于GIS的通信管线管理系统变得非常必要。该系统可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。 在基于GIS的通信管线管理系统中,音视频编解码技术可以发挥重要作用。通过音视频编解码技术,可以将管线资源的信息实时地捕捉和处理,从而实现管线资源的实时监控和管理。同时,音视频编解码技术也可以用于事故处理中,对管线资源进行实时监控和分析,以便快速确定事故原因和位置,减少事故处理时间。 此外,基于GIS的通信管线管理系统还可以实现管线资源的空间分析和可视化,通过音视频编解码技术,可以将管线资源的信息转换为实时的视频图像,从而实现管线资源的实时监控和管理。同时,该系统还可以实现管线资源的智能分析和预测,对管线资源的使用和维护进行科学的分析和预测,从而提高管线资源的使用效率和可靠性。 音视频编解码技术在基于GIS的通信管线管理系统中扮演着非常重要的角色,可以实现管线资源的高效管理和查询,提高运营商的工作效率,减少事故处理时间,提高客户满意度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依