以半朴素贝叶斯SBC构建情感分类模型的matlab代码
时间: 2023-10-01 20:11:41 浏览: 138
基于朴素贝叶斯实现数据分类附matlab代码
以下是使用半朴素贝叶斯(SBC)算法构建情感分类模型的一个简单的 MATLAB 代码示例:
```matlab
% 加载数据集
data = load('sentiment_data.csv'); % 假设数据集存储在 sentiment_data.csv 文件中
X = data(:, 1:end-1); % 特征矩阵
y = data(:, end); % 标签向量
% 划分训练集和测试集
train_ratio = 0.8; % 训练集占总样本的比例
train_size = round(train_ratio * size(X, 1));
train_indices = randperm(size(X, 1), train_size); % 随机选择训练样本的索引
test_indices = setdiff(1:size(X, 1), train_indices); % 剩下的是测试样本的索引
X_train = X(train_indices, :);
y_train = y(train_indices);
X_test = X(test_indices, :);
y_test = y(test_indices);
% 计算类别先验概率
class_prior = sum(y_train) / length(y_train);
% 计算每个特征的条件概率
num_features = size(X_train, 2);
p_feature_given_class = zeros(2, num_features); % 2 表示两个类别,num_features 表示特征数量
for i = 1:num_features
feature_values = unique(X_train(:, i)); % 第 i 列特征的所有取值
for j = 1:length(feature_values)
feature_val = feature_values(j);
count_class_0 = sum(y_train == 0 & X_train(:, i) == feature_val); % 类别为 0 且特征值为 feature_val 的样本数量
count_class_1 = sum(y_train == 1 & X_train(:, i) == feature_val); % 类别为 1 且特征值为 feature_val 的样本数量
p_feature_given_class(1, i) = p_feature_given_class(1, i) + count_class_0;
p_feature_given_class(2, i) = p_feature_given_class(2, i) + count_class_1;
end
end
p_feature_given_class(1, :) = p_feature_given_class(1, :) / sum(y_train == 0); % 归一化
p_feature_given_class(2, :) = p_feature_given_class(2, :) / sum(y_train == 1); % 归一化
% 预测测试样本的类别
y_pred = zeros(length(y_test), 1);
for i = 1:length(y_test)
p_class_0 = class_prior;
p_class_1 = class_prior;
for j = 1:num_features
feature_val = X_test(i, j);
p_class_0 = p_class_0 * p_feature_given_class(1, j) * sum(X_train(:, j) == feature_val);
p_class_1 = p_class_1 * p_feature_given_class(2, j) * sum(X_train(:, j) == feature_val);
end
if p_class_0 > p_class_1
y_pred(i) = 0;
else
y_pred(i) = 1;
end
end
% 计算准确率
accuracy = sum(y_pred == y_test) / length(y_test);
disp(['准确率:', num2str(accuracy)]);
```
请注意,这只是一个简单的示例代码,可能需要根据你的数据集和具体需求进行修改和优化。此外,你需要将数据集存储在名为 "sentiment_data.csv" 的文件中,并确保数据集中的特征和标签列已正确加载到 `X` 和 `y` 变量中。
阅读全文