def __call__(self, p, targets): # predictions, targets, model device = targets.device lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
时间: 2024-04-15 21:27:26 浏览: 125
根据你提供的代码,问题出现在 `__call__` 方法中的 `self.build_targets(p, targets)` 行。
要解决这个问题,你需要检查 `build_targets` 方法的实现,并确保它返回一个可迭代对象,而不是 None。
下面是一个可能的实现示例,用于给出一个可迭代对象的返回值:
```python
def build_targets(self, p, targets):
# 在这里实现构建目标的逻辑
# 返回一个可迭代对象,例如:
return tcls, tbox, indices, anchors
```
请确保在 `build_targets` 方法中正确地计算并返回 `tcls`、`tbox`、`indices` 和 `anchors` 这些变量。
如果你已经检查了 `build_targets` 方法的实现,并且它应该返回一个可迭代对象,但仍然遇到错误,请提供更多的代码和上下文信息,以便我可以帮助你进一步解决问题。
相关问题
class ComputeLoss: sort_obj_iou = False # Compute losses def __init__(self, model, autobalance=False): device = next(model.parameters()).device # get model device h = model.hyp # hyperparameters # Define criteria BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets # Focal loss g = h['fl_gamma'] # focal loss gamma if g > 0: BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) m = de_parallel(model).model[-1] # Detect() module self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance self.na = m.na # number of anchors self.nc = m.nc # number of classes self.nl = m.nl # number of layers self.anchors = m.anchors self.device = device这个代码什么意思
这段代码是定义了一个 ComputeLoss 类,用于计算 YOLOv5 模型的损失值。在初始化时,会根据模型的超参数定义不同的损失函数,包括分类损失 BCEcls、目标检测损失 BCEobj 和 Focal Loss。同时还对正负样本进行了平滑处理,以及为不同的特征层定义了不同的权重平衡。在计算损失时,会用到模型的输出以及一些超参数,最终返回损失值。
def __init__(self, n, dim, num_classes, temperature): self.n = n self.dim = dim self.features = torch.FloatTensor(self.n, self.dim) #self.features = torch.FloatTensor(self.n, 512) self.targets = torch.LongTensor(self.n) self.ptr = 0 self.device = 'cpu' self.K = 100 self.temperature = temperature self.C = num_classes
这段代码是一个类的构造函数。它接受四个参数:n,dim,num_classes和temperature。在构造函数中,它初始化了一些变量和张量,包括self.n,self.dim,self.features,self.targets,self.ptr,self.device,self.K和self.C。其中,self.features是一个大小为self.n x self.dim的浮点型张量,self.targets是一个大小为self.n的长整型张量。这些张量用于存储特征和目标数据。构造函数还设置了一些默认值,例如将self.device设置为'cpu',self.K设置为100。最后,构造函数将传入的num_classes参数赋值给self.C。
阅读全文