使用pytorch编写一个DnCNN
时间: 2024-10-20 07:06:14 浏览: 37
DnCNN-pytorch.zip_DNCNN_DNCNN pytorch_DnCNN-pytorch_dncnn pyto
5星 · 资源好评率100%
深度卷积神经网络 (Deep Convolutional Neural Network, DnCNN) 是一种用于超分辨率图像恢复的经典模型,它利用了深度学习的强大能力来提升低分辨率图像的质量。在PyTorch中编写一个简单的DnCNN主要包括以下几个步骤:
1. **导入所需库**:
```python
import torch
from torch import nn
import torch.nn.functional as F
```
2. **定义网络结构**:
DnCNN通常包括卷积层、非线性激活函数(如ReLU)、以及残差连接。这里是一个基础版本的三层DnCNN示例:
```python
class DnCNN(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1):
super(DnCNN, self).__init__()
self.conv_blocks = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, padding=padding),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, padding=padding),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size, padding=padding)
)
self.output_layer = nn.Conv2d(out_channels, out_channels, kernel_size=1)
def forward(self, x):
residual = x
x = self.conv_blocks(x)
x += residual # 残差连接
return self.output_layer(F.relu(x))
```
3. **实例化并训练网络**:
```python
model = DnCNN(in_channels=3, out_channels=3) # 对于RGB图像,in_channels通常是3
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```
4. **训练循环**:
```python
for epoch in range(num_epochs):
for inputs, targets in dataloader:
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
5. **保存和加载模型**:
```python
torch.save(model.state_dict(), 'dncnn.pth')
model.load_state_dict(torch.load('dncnn.pth'))
```
阅读全文