alexnet cifar10
时间: 2024-06-19 19:02:28 浏览: 191
AlexNet是2012年ImageNet竞赛上获得冠军的卷积神经网络模型,由Alex Krizhevsky, Ilya Sutskever, 和Geoffrey Hinton共同开发。它被认为是深度学习中的一个重要里程碑,因为它首次证明了卷积神经网络在大规模图像识别问题上的优越性能。
CIFAR-10是一个图像分类数据集,包含10个不同的类别,每个类别有6000张32x32像素的彩色图片。AlexNet在CIFAR-10数据集上也表现出色。不过,与在ImageNet数据集上使用的模型相比,它有更少的层数和更小的卷积核尺寸。
在CIFAR-10数据集上,AlexNet使用了5个卷积层和3个全连接层。具体而言,前两个卷积层使用11x11大小的卷积核,后续的卷积层使用5x5大小的卷积核。通过使用ReLU激活函数和局部响应归一化(LRN)技术,AlexNet在CIFAR-10数据集上取得了较好的表现。
相关问题
alexnet cifar10,resize=32,代码
以下是使用PyTorch实现AlexNet在CIFAR10数据集上进行训练的代码,同时将输入图像大小调整为32x32:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# Define the neural network architecture
class AlexNet(nn.Module):
def __init__(self, num_classes=10):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(192, 384, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# Define the data preprocessing
transform = transforms.Compose([
transforms.Resize(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Load the CIFAR10 dataset
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
# Create the neural network model and optimizer
net = AlexNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
# Train the neural network model
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
# Test the neural network model
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
基于alexnet cifar-10 pytorch
好的,我来为您介绍如何在PyTorch中使用AlexNet对CIFAR-10数据集进行训练。以下是基于PyTorch的代码示例:
首先,我们需要加载CIFAR-10数据集。PyTorch提供了内置的方法来加载和预处理数据集:
```python
import torch
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理
transform = transforms.Compose(
[transforms.Resize((227, 227)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# 加载CIFAR-10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
shuffle=False, num_workers=2)
```
接下来,我们需要定义AlexNet模型并进行微调。在这里,我们将最后一层的输出从1000个类别更改为10个类别,以适应CIFAR-10数据集的分类任务:
```python
import torch.nn as nn
import torch.optim as optim
from torchvision.models import alexnet
# 加载预训练的AlexNet模型
model = alexnet(pretrained=True)
# 将最后一层的输出从1000个类别更改为10个类别
num_features = model.classifier[6].in_features
model.classifier[6] = nn.Linear(num_features, 10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
最后,我们可以使用反向传播算法和随机梯度下降算法来训练这个模型:
```python
# 训练模型
for epoch in range(10): # 遍历数据集10次
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# 获取输入并将其送入模型中
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
# 计算损失并执行反向传播
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 200 == 199: # 每200个batch打印一次
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 200))
running_loss = 0.0
print('Finished Training')
```
最后,我们可以使用测试集来测试训练出的模型的性能:
```python
# 在测试集上测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
希望这能对您有所帮助!
阅读全文