神经网络插值计算代码
时间: 2023-12-20 22:27:32 浏览: 160
神经网络插值计算的代码如下:
```python
import numpy as np
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def neural_network_interpolation(x_train, y_train, x_test, num_hidden_units):
num_input_units = len(x_train)
num_output_units = len(x_test)
# 初始化权重
w1 = np.random.randn(num_hidden_units, num_input_units)
w2 = np.random.randn(num_output_units, num_hidden_units)
# 前向传播
hidden_units = sigmoid(np.dot(w1, x_train))
output_units = np.dot(w2, hidden_units)
# 计算误差
error = output_units - y_train
# 反向传播更新权重
d_w2 = np.dot(error, hidden_units.T)
d_w1 = np.dot(np.dot(w2.T, error) * hidden_units * (1 - hidden_units), x_train.T)
# 更新权重
learning_rate = 0.01
w2 -= learning_rate * d_w2
w1 -= learning_rate * d_w1
# 根据训练好的神经网络进行插值计算
hidden_units = sigmoid(np.dot(w1, x_test))
output_units = np.dot(w2, hidden_units)
return output_units
x_train = np.array([1, 2, 3, 4, 5])
y_train = np.array([2, 4, 6, 8, 10])
x_test = np.array([2.5, 3.5])
num_hidden_units = 3
output_units = neural_network_interpolation(x_train, y_train, x_test, num_hidden_units)
print(output_units)
```
阅读全文