从零开始搭建一个pytorch图像识别模型
时间: 2024-10-03 11:04:03 浏览: 29
PyTorch 1.0.0图像预训练模型.zip
从零开始搭建PyTorch图像识别模型通常涉及以下几个步骤[^1]:
1. **环境设置**:
```python
!pip install torch torchvision
```
2. **导入库和模块**:
```python
import torch
from torchvision import datasets, transforms
```
3. **数据预处理**:
```python
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.ImageFolder('path/to/train/dataset', transform=transform)
```
4. **创建数据加载器**:
```python
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)
```
5. **构建网络架构**:
```python
model = torchvision.models.resnet18(pretrained=True) # 使用预训练的ResNet
num_classes = len(train_dataset.classes) # 获取类别数
model.fc = nn.Linear(model.fc.in_features, num_classes) # 修改分类层
```
6. **定义损失函数和优化器**:
```python
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
```
7. **训练模型**:
```python
for epoch in range(num_epochs):
for images, labels in train_loader:
...
loss.backward()
optimizer.step()
optimizer.zero_grad()
```
8. **评估和保存模型**:
```python
model.eval()
with torch.no_grad():
predictions = model(images)
_, predicted_labels = torch.max(predictions.data, 1)
```
完成以上步骤后,你就有了一个基础的PyTorch图像识别模型。请注意,实际操作时可能还需要调整超参数,如学习率、批大小和迭代次数(`num_epochs`)。
阅读全文