def define_gan(self): self.generator_aux=Generator(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) self.supervisor=Supervisor(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.discriminator=Discriminator(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.recovery = Recovery(self.hidden_dim, self.n_seq).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.embedder = Embedder(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) X = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RealData') Z = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RandomNoise') # AutoEncoder H = self.embedder(X) X_tilde = self.recovery(H) self.autoencoder = Model(inputs=X, outputs=X_tilde) # Adversarial Supervise Architecture E_Hat = self.generator_aux(Z) H_hat = self.supervisor(E_Hat) Y_fake = self.discriminator(H_hat) self.adversarial_supervised = Model(inputs=Z, outputs=Y_fake, name='AdversarialSupervised') # Adversarial architecture in latent space Y_fake_e = self.discriminator(E_Hat) self.adversarial_embedded = Model(inputs=Z, outputs=Y_fake_e, name='AdversarialEmbedded') #Synthetic data generation X_hat = self.recovery(H_hat) self.generator = Model(inputs=Z, outputs=X_hat, name='FinalGenerator') # Final discriminator model Y_real = self.discriminator(H) self.discriminator_model = Model(inputs=X, outputs=Y_real, name="RealDiscriminator") # Loss functions self._mse=MeanSquaredError() self._bce=BinaryCrossentropy()
时间: 2024-02-14 12:26:57 浏览: 156
这段代码看起来是在定义一个生成对抗网络(GAN)的结构。代码中包含了生成器(Generator)、监督器(Supervisor)、判别器(Discriminator)、恢复器(Recovery)和嵌入器(Embedder)等模型的构建。
其中,生成器接收随机噪声作为输入,生成伪造的数据。监督器接收生成器生成的数据,并通过一些处理来生成更高质量的数据。判别器用于区分真实数据和伪造数据。恢复器通过将隐藏层的表示恢复为原始数据。嵌入器用于将原始数据转换为隐藏层的表示。
接下来,代码定义了三个不同的模型:自编码器(AutoEncoder)、在潜在空间中的对抗训练模型(Adversarial Supervise Architecture)和嵌入空间中的对抗训练模型(Adversarial Embedded)。其中自编码器用于将原始数据重构为自身。在潜在空间中的对抗训练模型和嵌入空间中的对抗训练模型分别用于在隐藏层的表示和嵌入空间中进行对抗训练。
此外,代码还定义了生成器模型和判别器模型,分别用于生成合成数据和判断真实数据。
最后,代码定义了均方误差(MeanSquaredError)和二元交叉熵(BinaryCrossentropy)作为损失函数。
请注意,这只是代码的一部分,无法完全了解整个模型的功能和训练过程。如果你需要更详细的解释或其他问题,请提供更多的上下文信息。
相关问题
def define_gan(self): self.generator_aux=Generator(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) self.supervisor=Supervisor(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.discriminator=Discriminator(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.recovery = Recovery(self.hidden_dim, self.n_seq).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.embedder = Embedder(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) X = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RealData') Z = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RandomNoise')
这段代码定义了一个名为define_gan的方法,用于在GAN模型中定义生成器(generator)、监督模型(supervisor)、判别器(discriminator)、恢复模型(recovery)和嵌入器(embedder)。
在该方法中,使用各个类的build方法构建了相应的模型,并将其存储在相应的实例变量中:
- self.generator_aux:通过调用Generator类的build方法构建生成器模型。input_shape参数设置为(self.seq_len, self.n_seq)。
- self.supervisor:通过调用Supervisor类的build方法构建监督模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.discriminator:通过调用Discriminator类的build方法构建判别器模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.recovery:通过调用Recovery类的build方法构建恢复模型。input_shape参数设置为(self.hidden_dim, self.hidden_dim)。
- self.embedder:通过调用Embedder类的build方法构建嵌入器模型。input_shape参数设置为(self.seq_len, self.n_seq)。
接下来,定义了两个输入层对象X和Z。它们分别表示真实数据输入和随机噪声输入。X和Z的形状分别为[self.seq_len, self.n_seq],batch_size设置为self.batch_size。
这段代码的目的是在GAN模型中定义各个组件,并创建输入层对象以供后续使用。
def define_generator(): # 定义输入 inputs = layers.Input(shape=(LATENT_DIM,)) x = layers.Dense(256)(inputs) x = layers.LeakyReLU()(x) x = layers.BatchNormalization()(x) x = layers.Dense(512)(x) x = layers.LeakyReLU()(x) x = layers.BatchNormalization()(x) x = layers.Dense(SEQ_LEN * NUM_CLASSES, activation='tanh')(x) outputs = layers.Reshape((SEQ_LEN, NUM_CLASSES))(x) # 定义模型 model = tf.keras.Model(inputs, outputs, name='generator') return model # 定义判别器模型 def define_discriminator(): # 定义输入 inputs = layers.Input(shape=(SEQ_LEN, NUM_CLASSES)) x = layers.Flatten()(inputs) x = layers.Dense(512)(x) x = layers.LeakyReLU()(x) x = layers.Dense(256)(x) x = layers.LeakyReLU()(x) # 注意这里输出为1,表示真假 outputs = layers.Dense(1, activation='sigmoid')(x) # 定义模型 model = tf.keras.Model(inputs, outputs, name='discriminator') return model # 定义GAN模型 def define_gan(generator, discriminator): # 将判别器设置为不可训练 discriminator.trainable = False # 定义输入 inputs = layers.Input(shape=(LATENT_DIM,)) # 生成音符和和弦 outputs = generator(inputs) # 判断音符和和弦是否为真实的 real_or_fake = discriminator(outputs) # 定义模型 model = tf.keras.Model(inputs, real_or_fake, name='gan') return model # 定义损失函数和优化器 def define_loss_and_optimizer(): loss_fn = tf.keras.losses.BinaryCrossentropy() generator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5) discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5) return loss_fn, generator_optimizer, discriminator_optimizer
这段代码看起来像是在定义一个基于 GAN 的音乐生成模型。其中包含了三个函数,分别是生成器模型、判别器模型和 GAN 模型。生成器模型输入一个随机的噪音向量,输出一个符合规定长度和音符类型数量的音符和和弦序列。判别器模型输入一个音符和和弦序列,输出该序列的真假。GAN 模型则将生成器和判别器组合在一起,通过训练使得生成器可以生成更加真实的音符和和弦序列,同时判别器可以更加准确地判断真假。此外,还定义了损失函数和优化器来训练模型。
阅读全文