stm32f4单片机计算thd

时间: 2023-07-31 11:01:40 浏览: 163
首先,THD是“总谐波失真”(Total Harmonic Distortion)的缩写。计算THD对于STM32F4单片机来说,需要进行以下几个步骤: 1. 采集信号:通过STM32F4单片机的模数转换器(ADC)模块,将要测量的信号输入单片机。可以使用单片机的某个GPIO引脚接收外部信号,通过配置ADC工作模式和通道选择,将信号转换为数字形式,以便进行后续处理。 2. 信号处理:通过信号处理算法对采集到的信号进行预处理,包括滤波和采样率转换等。可以使用数字滤波器来消除噪音和杂散干扰,并通过差分运算放大器(PGA)来调整信号的幅度。 3. 谐波分析:利用FFT(快速傅里叶变换)算法对预处理后的信号进行频谱分析,计算出信号中的基波和各阶谐波的幅度。通过FFT可以将信号从时域转换到频域,得到频谱图,并可以从中提取出谐波分量。 4. THD计算:THD指标是衡量信号失真程度的重要参数。它表示所有谐波分量相对于基波分量的总和的百分比。在得到各阶谐波的幅度后,可以计算出THD值。THD计算公式为:THD = (sqrt(H2² + H3² + H4² + ... + Hn²) / H1) × 100%。其中,H1表示基波幅度,H2、H3、H4等表示各阶谐波幅度。 5. 结果输出:最后,将计算得到的THD值输出到显示屏、串口或其他外部设备上,以便用户查看和分析。 总之,通过适当的信号采集、预处理和谐波分析算法,结合STM32F4单片机的强大计算和通信能力,可以准确地计算出信号的THD值,以评估信号的失真程度。
相关问题

STM32F1 thd计算程序

以下是一个简单的STM32F1 THD计算程序: ```c #include "stm32f10x.h" #define SAMPLES 256 #define PI 3.14159265359 uint16_t adc_buffer[SAMPLES]; float thd; void GPIO_Configuration(void); void ADC_Configuration(void); void TIM_Configuration(void); int main(void) { GPIO_Configuration(); ADC_Configuration(); TIM_Configuration(); while (1) { } } void GPIO_Configuration(void) { // Configure PC0 as analog input GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOC, &GPIO_InitStructure); } void ADC_Configuration(void) { // Configure ADC1 ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); // Configure ADC1 channel 10 (PC0) ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 1, ADC_SampleTime_55Cycles5); // Enable ADC1 ADC_Cmd(ADC1, ENABLE); // Start ADC1 ADC_SoftwareStartConvCmd(ADC1, ENABLE); } void TIM_Configuration(void) { // Configure TIM2 for 1ms timer interrupt TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseStructure.TIM_Period = 7199; TIM_TimeBaseStructure.TIM_Prescaler = 999; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); // Enable TIM2 interrupt NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); } void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { // Read ADC buffer for (int i = 0; i < SAMPLES; i++) { adc_buffer[i] = ADC_GetConversionValue(ADC1); } // Calculate THD float sum = 0; float fundamental = 0; for (int i = 0; i < SAMPLES; i++) { float value = (float)adc_buffer[i] / 4096.0 * 3.3; sum += value * value; if (i == 0) { fundamental = value; } } sum -= fundamental * fundamental; thd = sqrtf(sum) / fundamental; TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } } ``` 该程序配置了STM32F1的ADC和定时器,通过读取ADC缓冲区中的采样数据来计算THD。计算THD的过程是使用RMS计算基波和总谐波的平方和,然后除以基波的幅度,最后开平方根。在本例中,使用的是256个采样点,采样时间为55个时钟周期,采样频率为1.1kHz。

写一个STM32 C语言通过ADC采样计算THD的重新

下面是一个使用 STM32 的 C 语言编写的通过 ADC 采样计算 THD 的示例代码: ```c #include "stm32f4xx.h" #include "arm_math.h" #define ADC1_DR_ADDRESS ((uint32_t)0x4001204C) void ADC1_Init(void); void TIM2_Init(void); void GPIO_Init(void); void NVIC_Configuration(void); void Delay(__IO uint32_t nCount); void CalculateTHD(void); __IO uint16_t ADC1ConvertedValue[1024]; uint32_t SampleCount = 1024; uint32_t THD = 0; float32_t harmonic[51]; float32_t signal[1024]; int main(void) { ADC1_Init(); TIM2_Init(); GPIO_Init(); NVIC_Configuration(); while (1) { CalculateTHD(); } } void ADC1_Init(void) { ADC_InitTypeDef ADC_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; DMA_InitTypeDef DMA_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_3Cycles); ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE); DMA_InitStructure.DMA_Channel = DMA_Channel_0; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_ADDRESS; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADC1ConvertedValue; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_BufferSize = SampleCount; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream0, &DMA_InitStructure); DMA_Cmd(DMA2_Stream0, ENABLE); ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); ADC_Cmd(ADC1, ENABLE); ADC_DMACmd(ADC1, ENABLE); ADC_SoftwareStartConv(ADC1); } void TIM2_Init(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseStructure.TIM_Period = 999; TIM_TimeBaseStructure.TIM_Prescaler = 83; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_Cmd(TIM2, ENABLE); } void GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOD, &GPIO_InitStructure); } void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); } void DMA2_Stream0_IRQHandler(void) { GPIO_SetBits(GPIOD, GPIO_Pin_14); DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TC); } void Delay(__IO uint32_t nCount) { while (nCount--) { } } void CalculateTHD(void) { uint32_t i, j; float32_t maxValue = 0.0; float32_t squaredSum = 0.0; float32_t rmsValue = 0.0; for (i = 0; i < SampleCount; i++) { signal[i] = (float32_t)ADC1ConvertedValue[i] / 4095.0 * 3.3; } arm_rms_f32(signal, SampleCount, &rmsValue); for (j = 1; j <= 50; j++) { maxValue = 0.0; for (i = 0; i < SampleCount; i++) { harmonic[j] = harmonic[j] + signal[i] * arm_sin_f32(2.0 * PI * j * i / SampleCount); } harmonic[j] = harmonic[j] * 2.0 / SampleCount; for (i = 0; i < SampleCount; i++) { squaredSum = squaredSum + arm_power_f32((signal[i] - harmonic[j] * arm_sin_f32(2.0 * PI * j * i / SampleCount)), 2.0); } THD = THD + (uint32_t)(100 * (arm_sqrt_f32(squaredSum / SampleCount) / rmsValue)); } THD = THD / 50; Delay(100); } ``` 该示例代码使用了 STM32 的 ADC 和 DMA 功能,采样 1024 个数据点,并通过计算得到了 THD 的值。该函数的实现过程如下: 1. 初始化 ADC 和 DMA,使其能够采样并存储数据。 2. 循环采样数据,计算其 RMS 值和谐波分量。 3. 计算 THD 值。 在计算 THD 值时,我们首先计算了每个谐波分量的值,然后计算了每个数据点与谐波分量之间的差值的平方和。最后,我们计算了 RMS 值并将其用作基准来计算 THD 值。 请注意,该示例代码仅供参考,并且可能需要根据你的具体应用场景进行修改。

相关推荐

最新推荐

recommend-type

(2024)跳槽涨薪必备精选面试题.pdf

(2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf (2024)跳槽涨薪必备精选面试题.pdf
recommend-type

应用服务器和部分网络安全设备技术参数.doc

服务器
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

matlab画矢量分布图

在MATLAB中,绘制矢量分布图通常用于可视化二维或三维空间中的向量场,这有助于理解力场、风速、磁场等现象的分布情况。以下是使用MATLAB创建矢量分布图的基本步骤: 1. 准备数据:首先,你需要有一个表示向量场的矩阵,其中每个元素代表一个点的x、y坐标及其对应的矢量分量。 2. 使用`quiver`函数:MATLAB提供了一个内置函数`quiver(x, y, U, V)`,其中`x`和`y`是网格的行和列坐标,`U`和`V`是对应于每个网格点的x和y分量的向量值。 ```matlab [X, Y] = meshgrid(x, y); % 创建网格 quiver(X,