pytorch-cnn-股票预测-源码
时间: 2023-09-02 16:03:49 浏览: 354
pytorch-cnn-股票预测是一个使用PyTorch框架实现的卷积神经网络模型,用于预测股票价格走势的源代码。
这个项目的目的是通过训练一个卷积神经网络模型,来预测股票价格的未来走势。卷积神经网络是一种深度学习模型,通过自动提取特征并学习数据之间的非线性关系来进行预测。
在这个源码中,首先进行数据的预处理。通常会使用历史股票价格的时间序列作为输入数据,以及对应的目标值作为标签。数据预处理的操作可能包括数据标准化、缺失值填充等等。
接下来,我们构建卷积神经网络模型。在源码中,可能会使用PyTorch提供的卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)等组件来构建模型,以及使用ReLU、Dropout等激活函数和正则化方法来提高模型的性能。
然后,我们定义损失函数,通常选择均方误差(Mean Squared Error)或交叉熵损失(Cross Entropy Loss)作为模型训练的目标函数,以便优化模型的预测结果。
最后,我们使用训练数据来训练模型,并使用测试数据来评估模型的性能。在源码中,我们会定义训练函数和测试函数,通过迭代训练,不断调整模型参数,以使得模型能够更准确地预测未知数据的输出结果。
总结来说,pytorch-cnn-股票预测-源码是一个基于PyTorch框架实现的卷积神经网络模型,用于预测股票价格走势的源代码。通过数据预处理、构建网络模型、定义损失函数和训练评估等步骤,可以使用这个代码来进行股票预测模型的训练和测试。
阅读全文