overlaps在深度学习中是什么意思
时间: 2023-11-13 14:05:12 浏览: 256
在深度学习中,"overlaps" 可以指代两个不同的概念。
1. 感受野重叠(Receptive Field Overlaps):这是指在卷积神经网络 (CNN) 中,每个神经元对输入图像的感受野(局部输入区域)的重叠程度。感受野是指一个神经元对应输入图像上的区域,它决定了神经元所能感知到的信息范围。当感受野之间存在重叠时,神经元可以共享相同的信息,从而提取更丰富和全局性的特征。
2. 重叠层(Overlapping Layers):在一些神经网络架构中,特征图(Feature Map)之间可以通过重叠的方式进行连接。这种重叠的层可以在空间上共享信息,并提供更多的上下文相关性。这种结构常见于一些分割或定位任务中,例如目标检测或语义分割。
需要根据上下文来确定在特定情况下 "overlaps" 所指的具体含义。
相关问题
基于深度学习的目标检测 代码
以下是一个基于深度学习的目标检测代码示例,使用的是 TensorFlow 和 Keras 框架。这个代码示例使用的是 Faster R-CNN 模型,可以在 COCO 数据集上进行训练和测试,同时还包括了数据增强和模型评估等功能。
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import models
from tensorflow.keras import optimizers
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Input
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import GlobalAveragePooling2D
from tensorflow.keras.layers import GlobalMaxPooling2D
from tensorflow.keras.layers import TimeDistributed
from tensorflow.keras.layers import AveragePooling2D
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Add
from tensorflow.keras.layers import ZeroPadding2D
from tensorflow.keras.layers import Cropping2D
from tensorflow.keras.layers import Lambda
from tensorflow.keras.layers import Reshape
from tensorflow.keras.layers import Concatenate
from tensorflow.keras.layers import Softmax
from tensorflow.keras.models import Model
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from tensorflow.keras.utils import plot_model
import numpy as np
import os
import cv2
import time
import argparse
from tqdm import tqdm
from pycocotools.coco import COCO
from pycocotools import mask as maskUtils
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
np.random.seed(42)
tf.random.set_seed(42)
class Config:
NAME = "faster_rcnn"
BACKBONE = "resnet50"
IMAGE_MIN_DIM = 800
IMAGE_MAX_DIM = 1333
RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512)
RPN_ANCHOR_RATIOS = [0.5, 1, 2]
RPN_ANCHOR_STRIDE = 16
RPN_NMS_THRESHOLD = 0.7
RPN_TRAIN_ANCHORS_PER_IMAGE = 256
RPN_POSITIVE_RATIO = 0.5
DETECTION_MIN_CONFIDENCE = 0.7
DETECTION_NMS_THRESHOLD = 0.3
DETECTION_MAX_INSTANCES = 100
LEARNING_RATE = 0.001
WEIGHT_DECAY = 0.0001
EPOCHS = 50
BATCH_SIZE = 1
STEPS_PER_EPOCH = 1000
VALIDATION_STEPS = 50
IMAGES_PER_GPU = 1
MEAN_PIXEL = np.array([123.7, 116.8, 103.9])
NUM_CLASSES = 81 # COCO has 80 classes + background
class DataGenerator(keras.utils.Sequence):
def __init__(self, dataset, config, shuffle=True, augment=True):
self.dataset = dataset
self.config = config
self.shuffle = shuffle
self.augment = augment
self.image_ids = np.copy(self.dataset.image_ids)
self.on_epoch_end()
def __len__(self):
return int(np.ceil(len(self.dataset.image_ids) / self.config.BATCH_SIZE))
def __getitem__(self, idx):
batch_image_ids = self.image_ids[idx * self.config.BATCH_SIZE:(idx + 1) * self.config.BATCH_SIZE]
batch_images = []
batch_gt_class_ids = []
batch_gt_boxes = []
for image_id in batch_image_ids:
image, gt_class_ids, gt_boxes = load_image_gt(self.dataset, self.config, image_id, augment=self.augment)
batch_images.append(image)
batch_gt_class_ids.append(gt_class_ids)
batch_gt_boxes.append(gt_boxes)
batch_images = np.array(batch_images)
batch_gt_class_ids = np.array(batch_gt_class_ids)
batch_gt_boxes = np.array(batch_gt_boxes)
rpn_match, rpn_bbox, rois, roi_gt_class_ids, roi_gt_boxes = build_rpn_targets(batch_images.shape, self.config, batch_gt_class_ids, batch_gt_boxes)
inputs = [batch_images, batch_gt_class_ids, batch_gt_boxes, rpn_match, rpn_bbox, rois, roi_gt_class_ids, roi_gt_boxes]
outputs = []
return inputs, outputs
def on_epoch_end(self):
if self.shuffle:
np.random.shuffle(self.image_ids)
def load_image_gt(dataset, config, image_id, augment=True):
image = dataset.load_image(image_id)
mask, class_ids = dataset.load_mask(image_id)
bbox = maskUtils.toBbox(mask)
bbox = np.expand_dims(bbox, axis=-1)
class_ids = np.expand_dims(class_ids, axis=-1)
gt_boxes = np.concatenate([bbox, class_ids], axis=-1)
if augment:
image, gt_boxes = augment_image(image, gt_boxes)
image, window, scale, padding = resize_image(image, min_dim=config.IMAGE_MIN_DIM, max_dim=config.IMAGE_MAX_DIM, padding=True)
gt_boxes[:, :4] = resize_box(gt_boxes[:, :4], scale, padding)
gt_class_ids = gt_boxes[:, 4]
return image.astype(np.float32) - config.MEAN_PIXEL, gt_class_ids.astype(np.int32), gt_boxes[:, :4].astype(np.float32)
def augment_image(image, gt_boxes):
if np.random.rand() < 0.5:
image = np.fliplr(image)
gt_boxes[:, 0] = image.shape[1] - gt_boxes[:, 0] - gt_boxes[:, 2]
return image, gt_boxes
def resize_image(image, min_dim=None, max_dim=None, padding=False):
original_shape = image.shape
rows, cols = original_shape[0], original_shape[1]
if min_dim:
scale = max(1, min_dim / min(rows, cols))
if max_dim:
scale = min(scale, max_dim / max(rows, cols))
image = cv2.resize(image, (int(round(cols * scale)), int(round(rows * scale))))
if padding:
padded_image = np.zeros((max_dim, max_dim, 3), dtype=np.float32)
padded_image[:image.shape[0], :image.shape[1], :] = image
window = (0, 0, image.shape[1], image.shape[0])
return padded_image, window, scale, (0, 0, 0, 0)
return image, None, scale, None
def resize_box(boxes, scale, padding):
if padding is not None:
boxes[:, 0] += padding[1] # x1
boxes[:, 1] += padding[0] # y1
boxes[:, :4] *= scale
return boxes
def overlaps(boxes1, boxes2):
i_x1 = np.maximum(boxes1[:, 0], boxes2[:, 0])
i_y1 = np.maximum(boxes1[:, 1], boxes2[:, 1])
i_x2 = np.minimum(boxes1[:, 2], boxes2[:, 2])
i_y2 = np.minimum(boxes1[:, 3], boxes2[:, 3])
i_area = np.maximum(i_x2 - i_x1 + 1, 0) * np.maximum(i_y2 - i_y1 + 1, 0)
a_area = (boxes1[:, 2] - boxes1[:, 0] + 1) * (boxes1[:, 3] - boxes1[:, 1] + 1)
b_area = (boxes2[:, 2] - boxes2[:, 0] + 1) * (boxes2[:, 3] - boxes2[:, 1] + 1)
u_area = a_area + b_area - i_area
overlaps = i_area / u_area
return overlaps
def compute_iou(box, boxes, eps=1e-8):
iou = overlaps(box[np.newaxis], boxes)
return iou
def compute_backbone_shapes(config, image_shape):
if callable(config.BACKBONE):
return config.BACKBONE(image_shape)
assert isinstance(config.BACKBONE, str)
if config.BACKBONE in ["resnet50", "resnet101"]:
if image_shape[0] >= 800:
return np.array([[200, 256], [100, 128], [50, 64], [25, 32], [13, 16]])
else:
return np.array([[100, 128], [50, 64], [25, 32], [13, 16], [7, 8]])
else:
raise ValueError("Invalid backbone name")
def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride):
scales, ratios = np.meshgrid(np.array(scales), np.array(ratios))
scales, ratios = scales.flatten(), ratios.flatten()
heights = scales / np.sqrt(ratios)
widths = scales * np.sqrt(ratios)
shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride
shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride
shifts_x, shifts_y = np.meshgrid(shifts_x, shifts_y)
box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
box_heights, box_centers_y = np.meshgrid(heights, shifts_y)
box_centers = np.stack([box_centers_y, box_centers_x], axis=2)
box_sizes = np.stack([box_heights, box_widths], axis=2)
box_centers = np.reshape(box_centers, [-1, 2])
box_sizes = np.reshape(box_sizes, [-1, 2])
boxes = np.concatenate([box_centers - 0.5 * box_sizes, box_centers + 0.5 * box_sizes], axis=1)
boxes = np.round(boxes)
return boxes
def generate_pyramid_anchors(scales, ratios, feature_shapes, feature_strides, anchor_stride):
anchors = []
for i in range(len(scales)):
anchors.append(generate_anchors(scales[i], ratios, feature_shapes[i], feature_strides[i], anchor_stride))
return np.concatenate(anchors, axis=0)
def norm_boxes(boxes, shape):
boxes = boxes.astype(np.float32)
h, w = shape[:2]
scale = np.array([h - 1, w - 1, h - 1, w - 1])
shift = np.array([0, 0, 1, 1])
boxes = np.divide(boxes - shift, scale)
boxes = np.maximum(np.minimum(boxes, 1), 0)
return boxes
def denorm_boxes(boxes, shape):
h, w = shape[:2]
scale = np.array([h - 1, w - 1, h - 1, w - 1])
shift = np.array([0, 0, 1, 1])
boxes = boxes * scale + shift
return boxes.astype(np.int32)
def overlaps_graph(boxes1, boxes2):
b1 = tf.reshape(tf.tile(tf.expand_dims(boxes1, 1), [1, 1, tf.shape(boxes2)[0]]), [-1, 4])
b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1])
b2 = tf.reshape(tf.transpose(b2), [-1, 4])
overlaps = compute_iou(b1, b2)
overlaps = tf.reshape(overlaps, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]])
return overlaps
def detection_target_graph(proposals, gt_class_ids, gt_boxes, config):
proposals = tf.cast(proposals, tf.float32)
gt_boxes = tf.cast(gt_boxes, tf.float32)
gt_class_ids = tf.cast(gt_class_ids, tf.int64)
# Compute overlaps matrix [proposals, gt_boxes]
overlaps = overlaps_graph(proposals, gt_boxes)
# Compute overlaps with positive anchors
roi_iou_max = tf.reduce_max(overlaps, axis=1)
positive_roi_bool = (roi_iou_max >= config.RPN_POSITIVE_RATIO)
positive_indices = tf.where(positive_roi_bool)[:, 0]
# Subsample ROIs. Aim for 33% positive
# Positive ROIs
positive_count = int(config.RPN_TRAIN_ANCHORS_PER_IMAGE * config.RPN_POSITIVE_RATIO)
positive_indices = tf.random.shuffle(positive_indices)[:positive_count]
positive_count = tf.shape(positive_indices)[0]
# Negative ROIs. Add enough to maintain positive:negative ratio.
r = 1.0 / config.RPN_POSITIVE_RATIO
negative_count = tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count
negative_indices = tf.where(roi_iou_max < config.RPN_POSITIVE_RATIO)[:, 0]
negative_count = tf.math.minimum(tf.shape(negative_indices)[0], negative_count)
negative_indices = tf.random.shuffle(negative_indices)[:negative_count]
# Gather selected ROIs
positive_rois = tf.gather(proposals, positive_indices)
negative_rois = tf.gather(proposals, negative_indices)
# Assign positive ROIs to GT boxes.
positive_overlaps = tf.gather(overlaps, positive_indices)
roi_gt_box_assignment = tf.cond(
tf.greater(tf.shape(positive_overlaps)[1], 0),
true_fn=lambda: tf.argmax(positive_overlaps, axis=1),
false_fn=lambda: tf.cast(tf.constant([]), tf.int64)
)
roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment)
roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment)
# Compute bbox refinement for positive ROIs
deltas = keras_rcnn.backend.boxutils.bbox_transform(positive_rois, roi_gt_boxes)
deltas /= tf.constant(config.BBOX_STD_DEV, dtype=tf.float32)
# Append negative ROIs and pad bbox deltas and masks that
# are not used for negative ROIs with zeros.
rois = tf.concat([positive_rois, negative_rois], axis=0)
N = tf.shape(negative_rois)[0]
P = tf.math.maximum(config.RPN_TRAIN_ANCHORS_PER_IMAGE - tf.shape(rois)[0], 0)
rois = tf.pad(rois, [(0, P), (0, 0)])
roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)])
roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)])
deltas = tf.pad(deltas, [(0, N + P), (0, 0)])
# Return rois and deltas
return rois, roi_gt_class_ids, deltas
def build_rpn_targets(image_shape, config, gt_class_ids, gt_boxes):
feature_shapes = compute_backbone_shapes(config, image_shape)
anchors = generate_pyramid_anchors(config.RPN_ANCHOR_SCALES, config.RPN_ANCHOR_RATIOS, feature_shapes, config.BACKBONE_SHAPES, config.RPN_ANCHOR_STRIDE)
rpn_match, rpn_bbox = keras_rcnn.backend.anchor.get_best_anchor(anchors, gt_boxes, config)
rpn_match = tf.expand_dims(rpn_match, axis=-1)
rpn_bbox = tf.reshape(rpn_bbox, [-1, 4])
rois, roi_gt_class_ids, deltas = tf.py_function(detection_target_graph, [anchors, gt_class_ids, gt_boxes, config], [tf.float32, tf.int64, tf.float32])
rois.set_shape([config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4])
roi_gt_class_ids.set_shape([config.RPN_TRAIN_ANCHORS_PER_IMAGE])
deltas.set_shape([config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4 * config.NUM_CLASSES])
rpn_match.set_shape([None, 1])
rpn_bbox.set_shape([None, 4])
rois = tf.stop_gradient(rois)
roi_gt_class_ids = tf.stop_gradient(roi_gt_class_ids)
deltas = tf.stop_gradient(deltas)
rpn_match = tf.stop_gradient(rpn_match)
rpn_bbox = tf.stop_gradient(rpn_bbox)
return rpn_match, rpn_bbox, rois, roi_gt_class_ids, deltas
def build_rpn_model(config):
input_image = Input(shape=[None, None, 3], name="input_image")
shared_layers = ResNet50(include_top=False, weights='imagenet', input_tensor=input_image)
layer_names = ["conv4_block6_out", "conv5_block3_out", "conv6_relu"]
layers = [shared_layers.get_layer(name).output for name in layer_names]
output_layers = layers
rpn_layers = []
for n, layer in enumerate(output_layers):
rpn = Conv2D(512, (3, 3), padding="same", activation="relu", name="rpn_conv%d" % (n + 1))(layer)
rpn_class = Conv2D(2 * config.RPN_ANCHOR_SCALES[0], (1, 1), activation="sigmoid", name="rpn_class%d" % (n + 1))(rpn)
rpn_bbox = Conv2D(4 * config.RPN_ANCHOR_SCALES[0], (1, 1), activation="linear", name="rpn_bbox%d" % (n + 1))(rpn)
rpn_layers.append(rpn_class)
rpn_layers.append(rpn_bbox)
rpn_class_logits = Concatenate(axis=1, name="rpn_class_logits")(rpn_layers[:len(config.RPN_ANCHOR_SCALES)])
rpn_class = Concatenate(axis=1, name="rpn_class")(rpn_layers[len(config.RPN_ANCHOR_SCALES):])
rpn_bbox = Concatenate(axis=1, name="rpn_bbox")(rpn_layers[len(config.R
File "/home/zhxk/.local/bin/yolo", line 8, in <module> sys.exit(entrypoint()) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/cfg/__init__.py", line 249, in entrypoint getattr(model, mode)(verbose=True, **overrides) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/engine/model.py", line 207, in train self.trainer.train() File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/engine/trainer.py", line 183, in train self._do_train(int(os.getenv("RANK", -1)), world_size) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/engine/trainer.py", line 302, in _do_train self.loss, self.loss_items = self.criterion(preds, batch) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/v8/detect/train.py", line 76, in criterion return self.compute_loss(preds, batch) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/v8/detect/train.py", line 174, in __call__ _, target_bboxes, target_scores, fg_mask, _ = self.assigner( File "/home/zhxk/.local/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/zhxk/.local/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 28, in decorate_context return func(*args, **kwargs) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/utils/tal.py", line 97, in forward target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes) File "/home/zhxk/.local/lib/python3.8/site-packages/ultralytics/yolo/utils/tal.py", line 44, in select_highest_overlaps if fg_mask.max() > 1: # one anchor is assigned to multiple gt_bboxes RuntimeError: CUDA error: device-side assert triggered CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1. Sentry is attempting to send 2 pending error messages Waiting up to 2 seconds Press Ctrl-C to quit THCudaCheck FAIL file=/pytorch/aten/src/THC/THCCachingHostAllocator.cpp line=278 error=710 : device-side assert triggered
根据您提供的错误信息,这是一个与CUDA相关的错误。出现此错误通常是由于CUDA内核遇到了问题,触发了设备端断言。这可能是由于使用了不正确的参数或数据类型,或者是由于内存不足等问题引起的。
为了调试此问题,您可以尝试以下几个步骤:
1. 确保您的CUDA版本与使用的深度学习框架兼容,并且已正确安装CUDA驱动程序和依赖项。
2. 检查您的代码和模型配置是否正确,特别是与CUDA相关的部分。确保正确设置了设备(device)和数据类型(dtype)。
3. 如果您的显卡内存不足,可以尝试减小批量大小(batch size)或模型大小,或者考虑使用更高性能的显卡。
4. 尝试将环境变量`CUDA_LAUNCH_BLOCKING`设置为1,以便在CUDA错误发生时阻塞程序并打印更详细的错误信息。
如果以上步骤都没有解决问题,您可以尝试在相关社区或论坛上提供更详细的错误信息以寻求帮助。
阅读全文