粒子群算法matlab路径规划系统
时间: 2023-11-21 17:55:33 浏览: 88
基于粒子群算法的路径规划问题研究附Matlab代码.zip
粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,常用于路径规划等问题。下面是一个使用Matlab实现的粒子群算法路径规划系统的示例:
```matlab
% 定义目标点和起始点
goal = [10, 10];
start = [1, 1];
% 定义地图
map = zeros(20, 20);
map(5:15, 5:15) = 1;
% 定义粒子群算法参数
num_particles = 50;
max_iterations = 100;
c1 = 2;
c2 = 2;
w = 0.7;
% 初始化粒子群
particles = repmat(struct('position', [], 'velocity', [], 'cost', [], 'best_position', [], 'best_cost', []), num_particles, 1);
for i = 1:num_particles
particles(i).position = start + rand(1, 2) * (goal - start);
particles(i).velocity = rand(1, 2) * 0.1;
particles(i).cost = path_cost(particles(i).position, goal, map);
particles(i).best_position = particles(i).position;
particles(i).best_cost = particles(i).cost;
end
% 初始化全局最优解
global_best_position = particles(1).position;
global_best_cost = particles(1).cost;
% 迭代优化
for iter = 1:max_iterations
for i = 1:num_particles
% 更新粒子速度和位置
particles(i).velocity = w * particles(i).velocity + c1 * rand(1, 2) .* (particles(i).best_position - particles(i).position) + c2 * rand(1, 2) .* (global_best_position - particles(i).position);
particles(i).position = particles(i).position + particles(i).velocity;
% 限制粒子位置在地图内
particles(i).position = max(particles(i).position, [1, 1]);
particles(i).position = min(particles(i).position, [20, 20]);
% 计算粒子代价
particles(i).cost = path_cost(particles(i).position, goal, map);
% 更新粒子最优解
if particles(i).cost < particles(i).best_cost
particles(i).best_position = particles(i).position;
particles(i).best_cost = particles(i).cost;
end
% 更新全局最优解
if particles(i).best_cost < global_best_cost
global_best_position = particles(i).best_position;
global_best_cost = particles(i).best_cost;
end
end
% 绘制路径
plot_path(start, goal, global_best_position, map);
end
% 计算路径代价
function cost = path_cost(position, goal, map)
path = [position; goal];
cost = 0;
for i = 1:size(path, 1)-1
if ~check_collision(path(i,:), path(i+1,:), map)
cost = cost + norm(path(i,:) - path(i+1,:));
else
cost = Inf;
break;
end
end
end
% 检查路径是否与障碍物相交
function collision = check_collision(p1, p2, map)
collision = false;
line = linspace(p1, p2, 10);
for i = 1:size(line, 1)-1
if map(round(line(i,2)), round(line(i,1))) == 1
collision = true;
break;
end
end
end
% 绘制路径和地图
function plot_path(start, goal, path, map)
clf;
hold on;
axis equal;
axis([0 21 0 21]);
for i = 1:size(map, 1)
for j = 1:size(map, 2)
if map(i, j) == 1
fill([j-1 j j j-1], [i-1 i-1 i i], 'k');
end
end
end
plot(start(1), start(2), 'ro', 'MarkerSize', 10, 'LineWidth', 2);
plot(goal(1), goal(2), 'gx', 'MarkerSize', 10, 'LineWidth', 2);
plot(path(:,1), path(:,2), 'b-', 'LineWidth', 2);
drawnow;
end
```
该示例中,我们首先定义了目标点和起始点,以及一个简单的地图。然后定义了粒子群算法的参数,包括粒子数、最大迭代次数、加速度常数等。接着初始化了粒子群,并进行迭代优化,更新粒子速度和位置,并计算粒子的代价。最后绘制了路径和地图。
阅读全文