Algorithm 1: The online LyDROO algorithm for solving (P1). input : Parameters V , {γi, ci}Ni=1, K, training interval δT , Mt update interval δM ; output: Control actions xt,ytKt=1; 1 Initialize the DNN with random parameters θ1 and empty replay memory, M1 ← 2N; 2 Empty initial data queue Qi(1) = 0 and energy queue Yi(1) = 0, for i = 1,··· ,N; 3 fort=1,2,...,Kdo 4 Observe the input ξt = ht, Qi(t), Yi(t)Ni=1 and update Mt using (8) if mod (t, δM ) = 0; 5 Generate a relaxed offloading action xˆt = Πθt ξt with the DNN; 6 Quantize xˆt into Mt binary actions xti|i = 1, · · · , Mt using the NOP method; 7 Compute Gxti,ξt by optimizing resource allocation yit in (P2) for each xti; 8 Select the best solution xt = arg max G xti , ξt and execute the joint action xt , yt ; { x ti } 9 Update the replay memory by adding (ξt,xt); 10 if mod (t, δT ) = 0 then 11 Uniformly sample a batch of data set {(ξτ , xτ ) | τ ∈ St } from the memory; 12 Train the DNN with {(ξτ , xτ ) | τ ∈ St} and update θt using the Adam algorithm; 13 end 14 t ← t + 1; 15 Update {Qi(t),Yi(t)}N based on xt−1,yt−1 and data arrival observation At−1N using (5) and (7). i=1 i i=1 16 end With the above actor-critic-update loop, the DNN consistently learns from the best and most recent state-action pairs, leading to a better policy πθt that gradually approximates the optimal mapping to solve (P3). We summarize the pseudo-code of LyDROO in Algorithm 1, where the major computational complexity is in line 7 that computes Gxti,ξt by solving the optimal resource allocation problems. This in fact indicates that the proposed LyDROO algorithm can be extended to solve (P1) when considering a general non-decreasing concave utility U (rit) in the objective, because the per-frame resource allocation problem to compute Gxti,ξt is a convex problem that can be efficiently solved, where the detailed analysis is omitted. In the next subsection, we propose a low-complexity algorithm to obtain G xti, ξt. B. Low-complexity Algorithm for Optimal Resource Allocation Given the value of xt in (P2), we denote the index set of users with xti = 1 as Mt1, and the complementary user set as Mt0. For simplicity of exposition, we drop the superscript t and express the optimal resource allocation problem that computes G xt, ξt as following (P4) : maximize j∈M0 ajfj/φ − Yj(t)κfj3 + i∈M1 {airi,O − Yi(t)ei,O} (28a) τ,f,eO,rO 17 ,算法建立的模型是什么
时间: 2023-06-16 14:05:48 浏览: 189
java.lang.RuntimeException: Unsupported algorithm: HmacSHA1解决方法
该算法建立了一个基于深度强化学习的在线优化框架,用于解决移动边缘计算网络中的资源优化问题。具体来说,它使用一个深度神经网络作为演员,学习如何产生最优的决策,同时使用一个临时记忆库来存储之前的状态和行动,用于训练一个深度神经网络作为评论家,评估当前策略的质量。此外,该算法还提出了一种低复杂度的算法来求解最优的资源分配问题。
阅读全文