使用c++完成下面设计:(1)深度优先搜索: ①深度优先搜索在尝试另一种路径之前,会探索每条可能的路径,直到结束。 ②算法: 如图3-2所示。深度优先搜索按ABDBEBACF顺序遍历。其中A是起点,F是终点。 深度优先搜索是树的中序遍历。即路径一直向左,直到遇到终端节点或者找到目标。如果达到终端节点,路径回退到上一层,转向右边,然后在向左边搜索,直到遇到目标或者终端节点。这个过程一直持续到发现目标或者检查到搜索空间中的最后一个节点。 ③main()提示您输入出发城市和目标城市。这意味可使用此程序来寻找任何两个城市之间的航线。 下面是运行结果: From? New York To? Los Angeles New York to Chicago to Denver to Los Angeles Distance is 2900 其中纽约到芝加哥900英里,芝加哥到丹佛1000英里,纽约到多伦多500英里,纽约到丹佛1800英里,多伦多到卡尔加里1700英里,多伦多到洛杉矶2500英里,多伦多到芝加哥500英里,丹佛到乌尔班纳1000英里,丹佛到休斯顿1000英里休斯顿到洛杉矶1500英里,丹佛到洛杉矶1000英里

时间: 2024-04-03 17:36:42 浏览: 56
这是一个比较复杂的问题,需要设计一个包含城市和距离信息的数据结构,并且实现深度优先搜索算法。以下是一个简单的实现: ```c++ #include <iostream> #include <string> #include <vector> #include <unordered_map> using namespace std; // 城市节点 struct City { string name; // 城市名 vector<pair<City*, int>> neighbors; // 相邻城市及距离 bool visited; // 是否已访问 City(string n) : name(n), visited(false) {} }; // 深度优先搜索 bool dfs(City* from, City* to, int& distance) { from->visited = true; if (from == to) return true; // 找到目标城市 for (auto& neighbor : from->neighbors) { if (!neighbor.first->visited) { if (dfs(neighbor.first, to, distance)) { distance += neighbor.second; return true; } } } return false; } int main() { unordered_map<string, City*> cities; // 城市名到节点的映射 // 添加城市节点 cities["New York"] = new City("New York"); cities["Chicago"] = new City("Chicago"); cities["Denver"] = new City("Denver"); cities["Los Angeles"] = new City("Los Angeles"); cities["Toronto"] = new City("Toronto"); cities["Calgary"] = new City("Calgary"); cities["Houston"] = new City("Houston"); cities["Urbana"] = new City("Urbana"); // 添加相邻城市及距离 cities["New York"]->neighbors.push_back({cities["Chicago"], 900}); cities["Chicago"]->neighbors.push_back({cities["Denver"], 1000}); cities["New York"]->neighbors.push_back({cities["Toronto"], 500}); cities["New York"]->neighbors.push_back({cities["Denver"], 1800}); cities["Toronto"]->neighbors.push_back({cities["Calgary"], 1700}); cities["Toronto"]->neighbors.push_back({cities["Los Angeles"], 2500}); cities["Toronto"]->neighbors.push_back({cities["Chicago"], 500}); cities["Denver"]->neighbors.push_back({cities["Urbana"], 1000}); cities["Denver"]->neighbors.push_back({cities["Houston"], 1000}); cities["Houston"]->neighbors.push_back({cities["Los Angeles"], 1500}); cities["Denver"]->neighbors.push_back({cities["Los Angeles"], 1000}); // 读入出发城市和目标城市 string from, to; cout << "From? "; getline(cin, from); cout << "To? "; getline(cin, to); // 搜索并计算距离 int distance = 0; if (dfs(cities[from], cities[to], distance)) { cout << from << " to " << to << " Distance is " << distance << endl; } else { cout << "No route found." << endl; } // 释放内存 for (auto& entry : cities) { delete entry.second; } return 0; } ``` 这个程序中,我们用 `unordered_map` 将城市名和城市节点进行映射。每个城市节点包含城市名、相邻城市及距离信息和是否已访问的标记。在搜索时,我们使用递归的方式,从出发城市开始,先标记为已访问,然后遍历其相邻城市,如果相邻城市未访问,则递归搜索该相邻城市。如果找到目标城市,则返回 true,并累加距离;否则返回 false。最后释放城市节点的内存。
阅读全文

相关推荐

最新推荐

recommend-type

c++搜索算法 树形搜索 深度优先搜索算法

深度优先搜索的搜索策略是尽可能深地搜索图,在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探索到的边,就沿此边继续搜索下去。当结点 V 的所有边都已被探寻过时,搜索将回溯到发现结点 V 有那条...
recommend-type

假设图中数据元素类型是字符型,请采用邻接矩阵或邻接表实现图的以下基本操作: (1)构造图(包括有向图、有向网、无向图、无向网); (2)根据深度优先遍历图。

深度优先遍历类似于树的先根遍历,从一个起始顶点开始,沿着一条路径尽可能深地探索,直到访问完所有顶点。在遍历过程中,通常使用一个visited[]数组来记录顶点的访问状态,初始化时所有顶点都标记为未访问(FALSE)...
recommend-type

ACM算法集锦(实现代码)

12. **欧拉路径与欧拉回路**:在图论中,如果一个图可以由一条路径经过所有边且只经过每条边一次,那么这个图有欧拉路径;如果这条路径还能回到起点,那就是欧拉回路。 13. **最小费用最大流**:Edmonds-Karp算法是...
recommend-type

图遍历的演示报告及源代码

本文主要探讨了在连通无向图上的两种遍历方法——深度优先搜索(DFS)和广度优先搜索(BFS),并结合C++编程语言进行了实践。 深度优先搜索通常使用栈来实现。在给定的概要设计中,ADT Stack被定义为具有初始化、...
recommend-type

人工智能 --传教士和野人问题

另一种方法是使用广度优先搜索,这可以找到最短的解决方案,但可能会消耗更多的计算资源。 总的来说,人工智能 - 传教士和野人问题是一个典型的约束满足问题(Constraint Satisfaction Problem, CSP),它展示了...
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。