focal loss与batch-balanced contrastive loss 相结合pytorch代码
时间: 2024-02-03 22:03:09 浏览: 198
pytorch实现focal loss的两种方式小结
下面是结合 Focal Loss 和 Batch-Balanced Contrastive Loss 的 PyTorch 代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, reduction='mean'):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets):
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
pt = torch.exp(-ce_loss)
focal_loss = self.alpha * (1-pt)**self.gamma * ce_loss
if self.reduction == 'mean':
return focal_loss.mean()
elif self.reduction == 'sum':
return focal_loss.sum()
else:
return focal_loss
class BatchBalancedContrastiveLoss(nn.Module):
def __init__(self, margin=0.5, alpha=0.5, beta=1, gamma=2, reduction='mean'):
super(BatchBalancedContrastiveLoss, self).__init__()
self.margin = margin
self.alpha = alpha
self.beta = beta
self.gamma = gamma
self.reduction = reduction
def forward(self, inputs, targets):
n = inputs.size(0)
sim_mat = torch.matmul(inputs, inputs.t())
targets = targets.view(n,1)
mask = targets.expand(n,n).eq(targets.expand(n,n).t())
pos_mask = mask.triu(diagonal=1)
neg_mask = (mask-triu(diagonal=1)).bool()
pos_pair = sim_mat[pos_mask]
neg_pair = sim_mat[neg_mask]
num_pos_pair = pos_mask.sum()
num_neg_pair = neg_mask.sum()
alpha = self.alpha
beta = self.beta
if num_pos_pair > 0:
alpha = (num_neg_pair / num_pos_pair) * self.alpha
if num_neg_pair > 0:
beta = (num_pos_pair / num_neg_pair) * self.beta
pos_loss = F.relu(pos_pair - self.margin)
neg_loss = F.relu(self.margin - neg_pair)
if self.gamma > 0:
pos_loss = torch.pow(pos_loss, self.gamma)
neg_loss = torch.pow(neg_loss, self.gamma)
pos_loss = alpha * pos_loss
neg_loss = beta * neg_loss
bbcon_loss = torch.cat([pos_loss, neg_loss], dim=0)
if self.reduction == 'mean':
return bbcon_loss.mean()
elif self.reduction == 'sum':
return bbcon_loss.sum()
else:
return bbcon_loss
class FocalBatchBalancedContrastiveLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, margin=0.5, beta=1, reduction='mean'):
super(FocalBatchBalancedContrastiveLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.margin = margin
self.beta = beta
self.reduction = reduction
self.focal_loss = FocalLoss(alpha=self.alpha, gamma=self.gamma, reduction='none')
self.bbcon_loss = BatchBalancedContrastiveLoss(margin=self.margin, alpha=1, beta=self.beta, reduction='none')
def forward(self, inputs, targets):
n = inputs.size(0)
ce_loss = self.focal_loss(inputs, targets)
bbcon_loss = self.bbcon_loss(inputs, targets)
if self.reduction == 'mean':
return (ce_loss + bbcon_loss).mean()
elif self.reduction == 'sum':
return (ce_loss + bbcon_loss).sum()
else:
return ce_loss + bbcon_loss
```
使用方法:
```python
loss_fn = FocalBatchBalancedContrastiveLoss(alpha=1, gamma=2, margin=0.5, beta=1, reduction='mean')
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
for epoch in range(num_epochs):
for i, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_fn(outputs, targets)
loss.backward()
optimizer.step()
```
注意,这里的 `inputs` 是模型的输出,而 `targets` 是标签。在训练过程中,你需要将 `inputs` 和 `targets` 输入到模型中,得到输出 `outputs`,然后计算损失并进行反向传播和优化。
阅读全文