使用 fopen_s读取一个wav文件并对其求WVD并输出WVD结果不使用库函数C语言并解释代码

时间: 2024-05-03 10:18:25 浏览: 100

首先需要了解一下WVD的概念和计算方法,Wigner-Ville Distribution(WVD)是一种时频分析方法,可以将信号在时域和频域上展开,从而更加全面地理解信号的特性。

下面是一个使用C语言计算WVD的示例代码,该代码读取一个wav文件并对其求WVD,并将结果输出到文件中:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define PI 3.14159265358979323846

typedef short sample_t;

int read_wav_file(char* filename, sample_t** data, int* num_samples, int* sample_rate, int* num_channels);
void write_wvd_file(char* filename, double** wvd, int num_samples, int num_freqs, double f0, double df);
void compute_wvd(double** wvd, sample_t* data, int num_samples, int num_freqs, double f0, double df);

int main(int argc, char** argv)
{
    // Check arguments
    if (argc != 3) {
        printf("Usage: %s input.wav output.wvd\n", argv[0]);
        return 1;
    }

    // Read input file
    sample_t* data;
    int num_samples, sample_rate, num_channels;
    if (!read_wav_file(argv[1], &data, &num_samples, &sample_rate, &num_channels)) {
        printf("Error reading WAV file\n");
        return 1;
    }

    // Compute WVD
    int num_freqs = 1024;
    double f0 = 0;
    double df = (double)sample_rate / num_freqs;
    double** wvd = (double**)malloc(num_samples * sizeof(double*));
    for (int i = 0; i < num_samples; i++) {
        wvd[i] = (double*)malloc(num_freqs * sizeof(double));
    }
    compute_wvd(wvd, data, num_samples, num_freqs, f0, df);

    // Write output file
    write_wvd_file(argv[2], wvd, num_samples, num_freqs, f0, df);

    // Clean up
    for (int i = 0; i < num_samples; i++) {
        free(wvd[i]);
    }
    free(wvd);
    free(data);

    return 0;
}

int read_wav_file(char* filename, sample_t** data, int* num_samples, int* sample_rate, int* num_channels)
{
    FILE* file;
    if (fopen_s(&file, filename, "rb") != 0) {
        return 0;
    }

    // Read WAV header
    char header[44];
    if (fread(header, 1, 44, file) != 44) {
        fclose(file);
        return 0;
    }
    if (memcmp(header, "RIFF", 4) != 0 || memcmp(header + 8, "WAVEfmt ", 8) != 0 || memcmp(header + 36, "data", 4) != 0) {
        fclose(file);
        return 0;
    }

    // Get sample rate and number of channels
    memcpy(sample_rate, header + 24, 4);
    memcpy(num_channels, header + 22, 2);

    // Read data
    int bytes_per_sample = (*num_channels) * 2;
    int num_bytes = *((int*)(header + 40));
    *num_samples = num_bytes / bytes_per_sample;
    *data = (sample_t*)malloc((*num_samples) * sizeof(sample_t));
    if (fread(*data, bytes_per_sample, *num_samples, file) != *num_samples) {
        fclose(file);
        free(*data);
        return 0;
    }

    // Done
    fclose(file);
    return 1;
}

void write_wvd_file(char* filename, double** wvd, int num_samples, int num_freqs, double f0, double df)
{
    FILE* file;
    if (fopen_s(&file, filename, "wb") != 0) {
        return;
    }

    // Write WVD header
    char header[16];
    memcpy(header, "WVD ", 4);
    memcpy(header + 4, &num_samples, 4);
    memcpy(header + 8, &num_freqs, 4);
    memcpy(header + 12, &f0, 8);
    memcpy(header + 20, &df, 8);
    fwrite(header, 1, 28, file);

    // Write WVD data
    for (int i = 0; i < num_samples; i++) {
        fwrite(wvd[i], sizeof(double), num_freqs, file);
    }

    // Done
    fclose(file);
}

void compute_wvd(double** wvd, sample_t* data, int num_samples, int num_freqs, double f0, double df)
{
    // Compute time and frequency grids
    double* t = (double*)malloc(num_samples * sizeof(double));
    double* f = (double*)malloc(num_freqs * sizeof(double));
    for (int i = 0; i < num_samples; i++) {
        t[i] = (double)i / sample_rate;
    }
    for (int i = 0; i < num_freqs; i++) {
        f[i] = f0 + i * df;
    }

    // Compute window function
    double* h = (double*)malloc(num_freqs * sizeof(double));
    for (int i = 0; i < num_freqs; i++) {
        double x = M_PI * (f[i] - f0) / df;
        h[i] = sin(x) / x;
    }

    // Compute WVD
    for (int i = 0; i < num_samples; i++) {
        for (int j = 0; j < num_freqs; j++) {
            double a = 0;
            double b = 0;
            for (int k = 0; k < num_samples; k++) {
                double tau = t[k] - t[i];
                double x = 2 * M_PI * f[j] * tau;
                double g = data[k] * data[i + k];
                a += g * cos(x);
                b += g * sin(x);
            }
            wvd[i][j] = (a * a + b * b) * h[j];
        }
    }

    // Clean up
    free(t);
    free(f);
    free(h);
}

代码中大致分为三个部分,分别是读取wav文件、计算WVD和写入输出文件。

在读取wav文件部分,使用fopen_s函数打开文件,然后读取WAV文件头信息并解析出采样率、通道数和数据。这里采用了简单的判断头部信息的方式来检测是否为WAV文件。

在计算WVD部分,首先需要计算时间和频率网格,然后计算一个窗函数,最后使用嵌套的循环计算WVD。这里采用了简单的直接计算方式,而没有使用FFT等优化算法。

在写入输出文件部分,首先写入WVD文件头信息,然后依次写入每个采样时刻的WVD结果。

需要注意的是,在使用完动态分配的内存后需要释放它们,否则会导致内存泄漏。在本示例代码中,使用了malloc函数动态分配了多个数组,在程序结束前需要释放它们。

以上是一个简单的使用C语言计算WVD的示例代码,希望对你有所帮助。

阅读全文
向AI提问 loading 发送消息图标

相关推荐

pdf

最新推荐

recommend-type

风光氢储+VSG并网系统仿真【附带参考文献】 仿真控制结构:风光储单独通过逆变器VSG控制并网,然后母线经过整流器+Buck变器连接PEM电解水制氢系统 1、PEM电解水制氢:采用功率外环加电流内环

风光氢储+VSG并网系统仿真【附带参考文献】 仿真控制结构:风光储单独通过逆变器VSG控制并网,然后母线经过整流器+Buck变器连接PEM电解水制氢系统 1、PEM电解水制氢:采用功率外环加电流内环控制,恒功率制氢,制氢系统建模参考给的文献,包含阳极模块、阴极模块、质子交膜模块、氢气存储模块 2、风机部分,采用扰动观察法实现MPPT最大功率跟踪,风力机桨叶模型、转速电流双闭环控制策略 3、双向储能:闭环控制、直流母线电压外环稳定母线电压,内环为电池充放电电流 4、光伏MPPT:则是采用电导增量法实现MPPT最大功率的跟踪 5、网侧采用VSG控制策略 ,核心关键词:风光氢储; VSG并网系统; 仿真控制结构; PEM电解水制氢; 功率外环; 电流内环; MPPT最大功率跟踪; 扰动观察法; 双向储能; 闭环控制; 直流母线电压; 光伏MPPT; 电导增量法; VSG控制策略。,《风光氢储与VSG并网系统的仿真研究:整流、Buck变换与PEM电解水制氢系统控制结构优化》
recommend-type

基于PLC的智能家居环境控制系统设计 ,基于PLC的智能家居; 环境控制; 系统设计,基于PLC的智能家居环境控制系统的设计与实现

基于PLC的智能家居环境控制系统设计 ,基于PLC的智能家居; 环境控制; 系统设计,基于PLC的智能家居环境控制系统的设计与实现
recommend-type

微机原理与接口技术复习重点很有用哦.ppt

微机原理与接口技术复习重点很有用哦.ppt
recommend-type

betaflight-1.rar

betaflight-1.rar
recommend-type

Matlab仿真三机并联风光混合储能并网系统,风光储并网,微电网系统,光伏电池模型,永磁同步风机,电压电流控制,PQ控制 波形正确,结构完整有参考文献,详情见图片 ,Matlab仿真; 三机并联

Matlab仿真三机并联风光混合储能并网系统,风光储并网,微电网系统,光伏电池模型,永磁同步风机,电压电流控制,PQ控制 波形正确,结构完整有参考文献,详情见图片 ,Matlab仿真; 三机并联; 风光混合储能并网; 微电网系统; 光伏电池模型; 永磁同步风机; 电压电流控制; PQ控制; 波形正确; 结构完整; 参考文献。,Matlab仿真三机并联风光储混合微电网系统研究
recommend-type

全面介绍酒店设施的培训纲要

从提供的信息来看,可以推断这是一份关于酒店设施培训的纲要文档,虽然具体的文件内容并未提供,但是可以从标题和描述中提炼一些相关知识点和信息。 首先,关于标题“酒店《酒店设施》培训活动纲要”,我们可以得知该文档的内容是关于酒店行业的培训,培训内容专注于酒店的设施使用和管理。培训活动纲要作为一项计划性文件,通常会涉及以下几个方面: 1. 培训目标:这可能是文档中首先介绍的部分,明确培训的目的是为了让员工熟悉并掌握酒店各项设施的功能、操作以及维护等。目标可以是提高员工服务效率、增强客户满意度、确保设施安全运行等。 2. 培训对象:该培训可能针对的是酒店内所有需要了解或操作酒店设施的员工,比如前台接待、客房服务员、工程技术人员、维修人员等。 3. 培训内容:这应该包括了酒店设施的详细介绍,比如客房内的家具、电器,公共区域的休闲娱乐设施,健身房、游泳池等体育设施,以及会议室等商务设施。同时,也可能会涉及到设备的使用方法、安全规范、日常维护、故障排查等。 4. 培训方式:这部分会说明是通过什么形式进行培训的,如现场操作演示、视频教学、文字说明、模拟操作、考核测试等。 5. 培训时间:这可能涉及培训的总时长、分阶段的时间表、各阶段的时间分配以及具体的培训日期等。 6. 培训效果评估:介绍如何评估培训效果,可能包括员工的反馈、考试成绩、实际操作能力的测试、工作中的应用情况等。 再来看描述,提到该文档“是一份很不错的参考资料,具有较高参考价值”,说明这个培训纲要经过整理,能够为酒店行业的人士提供实用的信息和指导。这份纲要可能包含了经过实践检验的最佳实践,以及专家们总结的经验和技巧,这些都是员工提升技能、提升服务质量的宝贵资源。 至于“感兴趣可以下载看看”,这表明该培训纲要对有兴趣了解酒店管理、特别是酒店设施管理的人士开放,这可能意味着纲要内容足够通俗易懂,即使是没有酒店行业背景的人员也能够从中获益。 虽然文件标签没有提供,但是结合标题和描述,我们可以推断标签可能与“酒店管理”、“设施操作”、“员工培训”、“服务技能提升”、“安全规范”等有关。 最后,“【下载自www.glzy8.com管理资源吧】酒店《酒店设施》培训活动纲要.doc”表明了文件来源和文件格式。"www.glzy8.com"很可能是一个提供管理资源下载的网站,其中"glzy"可能是对“管理资源”的缩写,而".doc"格式则说明这是一个Word文档,用户可以通过点击链接下载使用。 总结来说,虽然具体文件内容未知,但是通过提供的标题和描述,我们可以了解到该文件是一个酒店行业内部使用的设施培训纲要,它有助于提升员工对酒店设施的理解和操作能力,进而增强服务质量和客户满意度。而文件来源网站,则显示了该文档具有一定的行业共享性和实用性。
recommend-type

Qt零基础到精通系列:全面提升轮播图开发技能的15堂必修课

# 摘要 本文全面探讨了基于Qt框架的轮播图开发技术。文章首先介绍了Qt框架的基本安装、配置和图形用户界面的基础知识,重点讨论了信号与槽机制以及Widgets组件的使用。接着深入分析了轮播图的核心机制,包括工作原理、关键技术点和性能优化策略。在此基础上,文章详细阐述了使用Qt
recommend-type

创建的conda环境无法配置到pycharm

### 配置 Conda 虚拟环境到 PyCharm 的方法 在 PyCharm 中配置已创建的 Conda 虚拟环境可以通过以下方式实现: #### 方法一:通过新建 Python 工程的方式配置 当您创建一个新的 Python 工程时,可以按照以下流程完成 Conda 环境的配置: 1. 创建一个新项目,在弹出窗口中找到 **Python Interpreter** 设置区域。 2. 点击右侧的齿轮图标并选择 **Add...** 来添加新的解释器。 3. 在弹出的对话框中选择 **Conda Environment** 选项卡[^1]。 4. 如果尚未安装 Conda 或未检测到其路
recommend-type

Java与JS结合实现动态下拉框搜索提示功能

标题中的“java+js实现下拉框提示搜索功能”指的是一种在Web开发中常用的功能,即当用户在输入框中输入文本时,系统能够实时地展示一个下拉列表,其中包含与用户输入相关联的数据项。这个过程是动态的,意味着用户每输入一个字符,下拉列表就会更新一次,从而加快用户的查找速度并提升用户体验。此功能通常用在搜索框或者表单字段中。 描述中提到的“在输入框中输入信息,会出现下拉框列出符合条件的数据,实现动态的查找功能”具体指的是这一功能的实现方法。具体实现方式通常涉及前端技术JavaScript,可能还会结合后端技术Java,以及Ajax技术来获取数据并动态更新页面内容。 关于知识点的详细说明: 1. JavaScript基础 JavaScript是一种客户端脚本语言,用于实现前端页面的动态交互和数据处理。实现下拉框提示搜索功能需要用到的核心JavaScript技术包括事件监听、DOM操作、数据处理等。其中,事件监听可以捕捉用户输入时的动作,DOM操作用于动态创建或更新下拉列表元素,数据处理则涉及对用户输入的字符串进行匹配和筛选。 2. Ajax技术 Ajax(Asynchronous JavaScript and XML)是一种在无需重新加载整个页面的情况下,能够与服务器交换数据并更新部分网页的技术。利用Ajax,可以在用户输入数据时异步请求服务器端的Java接口,获取匹配的搜索结果,然后将结果动态插入到下拉列表中。这样用户体验更加流畅,因为整个过程不需要重新加载页面。 3. Java后端技术 Java作为后端开发语言,常用于处理服务器端逻辑。实现动态查找功能时,Java主要承担的任务是对数据库进行查询操作。根据Ajax请求传递的用户输入参数,Java后端通过数据库查询接口获取数据,并将查询结果以JSON或其他格式返回给前端。 4. 实现步骤 - 创建输入框,并为其绑定事件监听器(如keyup事件)。 - 当输入框中的文本变化时,触发事件处理函数。 - 事件处理函数中通过Ajax向后端发送请求,并携带输入框当前的文本作为查询参数。 - 后端Java接口接收到请求后,根据传入参数在数据库中执行查询操作。 - 查询结果通过Java接口返回给前端。 - 前端JavaScript接收到返回的数据后,更新页面上显示的下拉列表。 - 显示的下拉列表应能反映当前输入框中的文本内容,随着用户输入实时变化。 5. 关键技术细节 - **前端数据绑定和展示**:在JavaScript中处理Ajax返回的数据,并通过DOM操作技术更新下拉列表元素。 - **防抖和节流**:为输入框绑定的事件处理函数可能过于频繁触发,可能会导致服务器负载过重。因此,实际实现中通常会引入防抖(debounce)和节流(throttle)技术来减少请求频率。 - **用户体验优化**:下拉列表需要按匹配度排序,并且要处理大量数据时的显示问题,以保持良好的用户体验。 6. 安全和性能考虑 - **数据过滤和验证**:前端对用户输入应该进行适当过滤和验证,防止SQL注入等安全问题。 - **数据的加载和分页**:当数据量很大时,应该采用分页或其他技术来减少一次性加载的数据量,避免页面卡顿。 - **数据缓存**:对于经常查询且不常变动的数据,可以采用前端缓存来提高响应速度。 在文件名称列表中提到的"Ajax",实际上是一个关键的技术要点。实现动态下拉框提示功能往往需要将JavaScript和Ajax配合使用,实现页面的异步数据更新。这里的Ajax文件可能包含用于处理数据异步加载逻辑的JavaScript代码。 通过以上知识点的详细阐述,可以清晰了解java和js结合实现下拉框提示搜索功能的技术原理和实现步骤。这涉及到前端JavaScript编程、后端Java编程、Ajax数据交互、以及前后端数据处理和展示等多方面的技术细节。掌握这些技术能够有效地在Web应用中实现交互式的动态下拉框提示功能。
recommend-type

【LVGL快速入门与精通】:10个实用技巧,让你从新手到专家

# 摘要 LVGL(Light and Versatile Graphics Library)是一个开源的嵌入式图形库,专为资源受限的嵌入式系统设计。本文全面介绍LVGL图形库,探讨其核心概念、基础及高级应用技巧,以及如何在嵌入式系统中实现复杂的用户界面和优化用户体验。文章还分析了LVGL与硬件的集成方法、