邻域粗糙集python代码实例
时间: 2023-11-12 11:07:32 浏览: 118
以下是基于邻域粗糙集的Python代码实例:
```python
import numpy as np
# 定义邻域半径
radius = 2
# 定义属性集
attributes = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
# 定义决策集
decisions = np.array([0, 1, 0])
# 定义邻域函数
def neighborhood(x, y):
return np.linalg.norm(x - y) <= radius
# 定义邻域粗糙集函数
def neighborhood_rough_set(attributes, decisions):
n = len(attributes)
lower_approximation = set(range(n))
for i in range(n):
for j in range(n):
if neighborhood(attributes[i], attributes[j]) and decisions[i] != decisions[j]:
lower_approximation.discard(i)
break
return lower_approximation
# 输出邻域粗糙集
print(neighborhood_rough_set(attributes, decisions))
```
该代码实现了基于邻域粗糙集的属性约简,其中定义了邻域半径、属性集、决策集和邻域函数,并通过邻域函数计算出邻域粗糙集。
阅读全文