faster r-cnn Pycharm代码
时间: 2023-07-30 16:06:26 浏览: 189
以下是在PyCharm中实现Faster R-CNN的代码示例:
1. 创建PyCharm项目并打开项目
2. 在项目根目录下创建一个名为`data`的文件夹,并将训练集数据集和注释文件放入其中
3. 在项目根目录下创建一个名为`models`的文件夹,并在其中创建一个名为`faster_rcnn.py`的Python文件,用于定义Faster R-CNN模型
4. 在项目根目录下创建一个名为`train.py`的Python文件,用于训练模型
`faster_rcnn.py`文件代码示例:
```
import torch
import torchvision.models as models
import torch.nn as nn
class FasterRCNN(nn.Module):
def __init__(self):
super(FasterRCNN, self).__init__()
self.features = models.vgg16(pretrained=True).features
self.roi_pooling = nn.AdaptiveMaxPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 21)
)
self.bbox = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 84)
)
def forward(self, x, proposals):
x = self.features(x)
rois = []
for i in range(proposals.shape[0]):
roi = proposals[i]
x1, y1, x2, y2 = roi.tolist()
roi_feature = x[:, :, int(y1):int(y2), int(x1):int(x2)]
roi_feature = self.roi_pooling(roi_feature)
rois.append(roi_feature)
rois = torch.stack(rois, dim=0)
rois = rois.view(-1, 512 * 7 * 7)
cls_score = self.classifier(rois)
bbox_pred = self.bbox(rois)
return cls_score, bbox_pred
```
`train.py`文件代码示例:
```
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.optim as optim
from torch.utils.data import DataLoader
from models.faster_rcnn import FasterRCNN
# 加载数据集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.CocoDetection(root='./data', annFile='./data/annotations/instances_train2017.json', transform=transform)
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
# 定义优化器和损失函数
model = FasterRCNN()
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# 训练模型
for epoch in range(10):
for i, (images, targets) in enumerate(train_loader):
optimizer.zero_grad()
cls_score, bbox_pred = model(images, targets)
loss_cls = criterion(cls_score, targets)
loss_bbox = criterion(bbox_pred, targets)
loss = loss_cls + loss_bbox
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(train_loader), loss.item()))
```
在PyCharm中运行`train.py`文件即可开始训练模型。
阅读全文