def my_func(row): return row['单价'] - row['成本价'] df['利润'] = df.apply(my_func, axis=1)
时间: 2023-08-23 18:05:00 浏览: 106
这段代码定义了一个名为 my_func 的函数,该函数的输入是数据框 df 的一行数据,输出是该行数据中 '单价' 列减去 '成本价' 列的结果。然后,它使用数据框的 apply 方法,将 my_func 函数应用于数据框的每一行数据,计算每行数据的利润,并将结果存储在名为 '利润' 的新列中。请注意,代码中的 axis=1 参数表示按行应用函数,即对每一行数据进行操作。
相关问题
df = pd.read_csv('stock_comments_analyzed.csv', parse_dates=['created_time']) grouped = df['polarity'].groupby(df.created_time.dt.date) def BI_Simple_func(row): pos = row[row == 1].count() neg = row[row == 0].count() return (pos-neg)/(pos+neg) BI_Simple_index = grouped.apply(BI_Simple_func) def BI_func(row): pos = row[row == 1].count() neg = row[row == 0].count() bi = np.log(1.0 * (1+pos) / (1+neg)) return bi BI_index = grouped.apply(BI_func) sentiment_idx = pd.concat([BI_index.rename('BI'), BI_Simple_index.rename('BI_Simple')], axis=1) quotes = pd.read_csv('./data/sh000001.csv', parse_dates=['date']) quotes.set_index('date', inplace=True) sentiment_idx.index = pd.to_datetime(sentiment_idx.index) merged = pd.merge(sentiment_idx, quotes, how='left', left_index=True, right_index=True) merged.fillna(method='ffill', inplace=True) merged['BI_MA'] = merged['BI'].rolling(window=10, center=False).mean() merged['BI_Simple_MA'] = merged['BI_Simple'].rolling(window=10, center=False).mean() merged.to_csv('merged_sentiment_idx.csv')
这段代码是关于股票情绪指数的计算和处理,包括读取股票评论数据并按日期分组,定义了两个函数用于计算简单的情绪指数和 BI 指数,然后将这些指数与股票行情数据进行合并并计算移动平均数,最后将结果保存到 csv 文件中。其中,BI 指数是一种用于衡量市场情绪的指标,通过计算买方和卖方之间的力量平衡来反映市场的情绪状态。
阅读全文