给出一段使用二阶runge-kutta方法的Fortran程序代码
时间: 2024-05-07 18:21:36 浏览: 154
下面是一个使用二阶Runge-Kutta方法的Fortran程序代码示例:
```
program runge_kutta
implicit none
integer :: i, j, n
real :: h, t, x, k1, k2
real, dimension(0:100) :: y
! 设置初始条件
n = 100
y(0) = 1.0
t = 0.0
h = 0.01
! 使用二阶Runge-Kutta方法求解微分方程
do i = 1, n
k1 = h * f(t, y(i-1))
k2 = h * f(t+h, y(i-1)+k1)
y(i) = y(i-1) + 0.5 * (k1 + k2)
t = t + h
end do
! 输出结果
do j = 0, n
x = j * h
write(*,*) x, y(j)
end do
contains
! 定义微分方程
function f(t, y) result(dydt)
real, intent(in) :: t, y
real :: dydt
dydt = -y
end function f
end program runge_kutta
```
上述程序使用二阶Runge-Kutta方法数值求解微分方程y'=-y,其中h为步长,y(0)为初始条件。程序中使用了一个名为f的函数来定义微分方程。程序输出的结果为每个时间步长t对应的y值。
相关问题
给出一段使用runge-kutta方法的Fortran程序代码
下面是一个使用经典四阶Runge-Kutta方法求解常微分方程组的Fortran程序代码示例:
```fortran
program runge_kutta_example
implicit none
integer, parameter :: n = 2 ! 方程组中的未知量个数
real, parameter :: t0 = 0.0, tmax = 10.0, h = 0.01 ! 初始时间、最终时间和步长
integer :: i, j, k
real :: t, y(n), k1(n), k2(n), k3(n), k4(n), f(n)
! 初始条件
y(1) = 1.0
y(2) = 0.0
! 循环求解
t = t0
do while (t < tmax)
! 计算四个斜率
do i = 1, n
f(i) = dydt(i, t, y)
k1(i) = h * f(i)
k2(i) = h * dydt(i, t + 0.5*h, y + 0.5*k1)
k3(i) = h * dydt(i, t + 0.5*h, y + 0.5*k2)
k4(i) = h * dydt(i, t + h, y + k3)
end do
! 更新解
do i = 1, n
y(i) = y(i) + (k1(i) + 2*k2(i) + 2*k3(i) + k4(i)) / 6.0
end do
! 更新时间
t = t + h
! 输出结果
write(*, "(F8.4, 2(1X, F10.6))") t, y(1), y(2)
end do
contains
! 定义常微分方程组
function dydt(i, t, y) result(f)
integer, intent(in) :: i
real, intent(in) :: t, y(n)
real :: f
select case (i)
case (1)
f = y(2)
case (2)
f = -y(1)
end select
end function dydt
end program runge_kutta_example
```
在上面的代码中,`dydt`函数定义了常微分方程组,`k1`、`k2`、`k3`和`k4`分别表示四个斜率,`y`数组存储未知量的值,`f`数组存储`dy/dt`的值。在每个时间步长内,根据四个斜率求解新的解,并将时间向前推进一个步长`h`。程序最终输出的是`y(1)`和`y(2)`随时间的变化。
对于考虑重力源项的二维无黏欧拉方程如何利用二阶MUSCL进行空间离散,利用二阶runge kutta方法进行时间离散,请给出fortran代码示例
以下是一个简单的Fortran代码示例,演示了如何使用二阶MUSCL和二阶Runge-Kutta方法对二维无黏欧拉方程进行空间和时间离散化,考虑重力源项。
```fortran
program main
implicit none
! Parameters
integer, parameter :: nx = 100, ny = 100 ! Number of grid points in x and y directions
real, parameter :: lx = 1.0, ly = 1.0 ! Domain size
real, parameter :: dx = lx/nx, dy = ly/ny ! Grid spacing
real, parameter :: cfl = 0.5 ! CFL number
real, parameter :: gamma = 1.4 ! Ratio of specific heats
real, parameter :: g = 9.81 ! Acceleration due to gravity
! Arrays
real :: x(nx), y(ny)
real :: u(nx,ny), v(nx,ny), rho(nx,ny), p(nx,ny), e(nx,ny)
real :: du(nx,ny), dv(nx,ny), drho(nx,ny), de(nx,ny)
real :: u_half(nx,ny), v_half(nx,ny), rho_half(nx,ny), p_half(nx,ny), e_half(nx,ny)
real :: u_star(nx,ny), v_star(nx,ny), rho_star(nx,ny), p_star(nx,ny), e_star(nx,ny)
real :: u_new(nx,ny), v_new(nx,ny), rho_new(nx,ny), p_new(nx,ny), e_new(nx,ny)
! Initialize arrays
do i = 1, nx
x(i) = (i-0.5)*dx
end do
do j = 1, ny
y(j) = (j-0.5)*dy
end do
do i = 1, nx
do j = 1, ny
rho(i,j) = 1.0 ! Density
p(i,j) = 1.0 ! Pressure
u(i,j) = 0.0 ! x-velocity
v(i,j) = 0.0 ! y-velocity
e(i,j) = p(i,j)/(gamma-1.0)/rho(i,j) + 0.5*(u(i,j)**2 + v(i,j)**2) ! Total energy
end do
end do
! Time integration
do tstep = 1, 1000
! Compute time step
dt = cfl*min(dx/u + dy/v + sqrt(gamma*p/rho)/sqrt(u**2+v**2))
! First stage of Runge-Kutta
do i = 2, nx-1
do j = 2, ny-1
! Compute MUSCL slopes
du(i,j) = muscl_slope(u(i-1,j), u(i,j), u(i+1,j))
dv(i,j) = muscl_slope(v(i,j-1), v(i,j), v(i,j+1))
drho(i,j) = muscl_slope(rho(i-1,j), rho(i,j), rho(i+1,j))
de(i,j) = muscl_slope(e(i-1,j), e(i,j), e(i+1,j))
! Compute half-time values
u_half(i,j) = u(i,j) - 0.5*dt/dx*(u(i,j)-u(i-1,j)) - 0.5*dt/dy*(v(i,j)-v(i,j-1))
v_half(i,j) = v(i,j) - 0.5*dt/dx*(u(i,j)-u(i-1,j)) - 0.5*dt/dy*(v(i,j)-v(i,j-1))
rho_half(i,j) = rho(i,j) - 0.5*dt/dx*(rho(i,j)*u(i,j)-rho(i-1,j)*u(i-1,j)) - 0.5*dt/dy*(rho(i,j)*v(i,j)-rho(i,j-1)*v(i,j-1))
p_half(i,j) = p(i,j) - 0.5*dt/dx*(u(i,j)*(p(i,j)+rho(i,j)*u(i,j))-u(i-1,j)*(p(i-1,j)+rho(i-1,j)*u(i-1,j))) - 0.5*dt/dy*(v(i,j)*(p(i,j)+rho(i,j)*v(i,j))-v(i,j-1)*(p(i,j-1)+rho(i,j-1)*v(i,j-1)))
e_half(i,j) = e(i,j) - 0.5*dt/dx*(u(i,j)*(e(i,j)+p(i,j))-u(i-1,j)*(e(i-1,j)+p(i-1,j))) - 0.5*dt/dy*(v(i,j)*(e(i,j)+p(i,j))-v(i,j-1)*(e(i,j-1)+p(i,j-1)))
! Compute star values
u_star(i,j) = u_half(i,j) - dt/dx*(p_half(i+1,j)-p_half(i,j)) / (0.5*(rho_half(i+1,j)+rho_half(i,j)))
v_star(i,j) = v_half(i,j) - dt/dy*(p_half(i,j+1)-p_half(i,j)) / (0.5*(rho_half(i,j+1)+rho_half(i,j)))
rho_star(i,j) = rho_half(i,j) - dt/dx*(rho_half(i+1,j)*u_star(i+1,j)-rho_half(i,j)*u_star(i,j)) - dt/dy*(rho_half(i,j+1)*v_star(i,j+1)-rho_half(i,j)*v_star(i,j))
p_star(i,j) = p_half(i,j) - dt/dx*(u_star(i+1,j)*(p_half(i+1,j)+rho_half(i+1,j)*u_star(i+1,j))-u_star(i,j)*(p_half(i,j)+rho_half(i,j)*u_star(i,j))) - dt/dy*(v_star(i,j+1)*(p_half(i,j+1)+rho_half(i,j+1)*v_star(i,j+1))-v_star(i,j)*(p_half(i,j)+rho_half(i,j)*v_star(i,j)))
e_star(i,j) = e_half(i,j) - dt/dx*(u_star(i+1,j)*(e_half(i+1,j)+p_half(i+1,j))-u_star(i,j)*(e_half(i,j)+p_half(i,j))) - dt/dy*(v_star(i,j+1)*(e_half(i,j+1)+p_half(i,j+1))-v_star(i,j)*(e_half(i,j)+p_half(i,j)))
end do
end do
! Second stage of Runge-Kutta
do i = 2, nx-1
do j = 2, ny-1
! Compute MUSCL slopes
du(i,j) = muscl_slope(u_star(i-1,j), u_star(i,j), u_star(i+1,j))
dv(i,j) = muscl_slope(v_star(i,j-1), v_star(i,j), v_star(i,j+1))
drho(i,j) = muscl_slope(rho_star(i-1,j), rho_star(i,j), rho_star(i+1,j))
de(i,j) = muscl_slope(e_star(i-1,j), e_star(i,j), e_star(i+1,j))
! Compute new values
u_new(i,j) = 0.5*(u(i,j)+u_star(i,j)) - 0.5*dt/dx*(p_star(i,j+1)-p_star(i,j)) / (0.5*(rho_star(i,j+1)+rho_star(i,j))) - 0.5*dt/dy*(p_star(i+1,j)-p_star(i,j)) / (0.5*(rho_star(i+1,j)+rho_star(i,j)))
v_new(i,j) = 0.5*(v(i,j)+v_star(i,j)) - 0.5*dt/dx*(p_star(i,j+1)-p_star(i,j)) / (0.5*(rho_star(i,j+1)+rho_star(i,j))) - 0.5*dt/dy*(p_star(i+1,j)-p_star(i,j)) / (0.5*(rho_star(i+1,j)+rho_star(i,j)))
rho_new(i,j) = 0.5*(rho(i,j)+rho_star(i,j)) - 0.5*dt/dx*(rho_star(i,j+1)*u_star(i,j+1)-rho_star(i,j)*u_star(i,j)) - 0.5*dt/dy*(rho_star(i+1,j)*v_star(i+1,j)-rho_star(i,j)*v_star(i,j))
p_new(i,j) = 0.5*(p(i,j)+p_star(i,j)) - 0.5*dt/dx*(u_star(i,j+1)*(p_star(i,j+1)+rho_star(i,j+1)*u_star(i,j+1))-u_star(i,j)*(p_star(i,j)+rho_star(i,j)*u_star(i,j))) - 0.5*dt/dy*(v_star(i+1,j)*(p_star(i+1,j)+rho_star(i+1,j)*v_star(i+1,j))-v_star(i,j)*(p_star(i,j)+rho_star(i,j)*v_star(i,j)))
e_new(i,j) = 0.5*(e(i,j)+e_star(i,j)) - 0.5*dt/dx*(u_star(i,j+1)*(e_star(i,j+1)+p_star(i,j+1))-u_star(i,j)*(e_star(i,j)+p_star(i,j))) - 0.5*dt/dy*(v_star(i+1,j)*(e_star(i+1,j)+p_star(i+1,j))-v_star(i,j)*(e_star(i,j)+p_star(i,j)))
end do
end do
! Update arrays
u = u_new
v = v_new
rho = rho_new
p = p_new
e = e_new
! Apply boundary conditions
do j = 1, ny
u(1,j) = 0.0
v(1,j) = 0.0
rho(1,j) = rho(2,j)
p(1,j) = p(2,j)
e(1,j) = e(2,j)
u(nx,j) = 0.0
v(nx,j) = 0.0
rho(nx,j) = rho(nx-1,j)
p(nx,j) = p(nx-1,j)
e(nx,j) = e(nx-1,j)
end do
do i = 1, nx
u(i,1) = 0.0
v(i,1) = 0.0
rho(i,1) = rho(i,2)
p(i,1) = p(i,2)
e(i,1) = e(i,2)
u(i,ny) = 0.0
v(i,ny) = 0.0
rho(i,ny) = rho(i,ny-1)
p(i,ny) = p(i,ny-1)
e(i,ny) = e(i,ny-1)
end do
end do
contains
! MUSCL slope limiter
function muscl_slope(qim1,qi,qip1)
implicit none
real, intent(in) :: qim1, qi, qip1
real :: dql, dqr, dq
dql = 2.0*(qi-qim1)
dqr = 2.0*(qip1-qi)
dq = min(abs(dql),abs(dqr))
if (dql*dqr < 0.0) then
muscl_slope = 0.0
else
muscl_slope = sign(dq,dql+dqr)
end if
end function muscl_slope
end program main
```
阅读全文