使用 pytorch 设计深度网络 ,将、输入是尺寸为[256,1,16]的图像,输出是尺寸为[3,64,256]的图像,要求先使用conv下采样,再用ConvTranspose上采样
时间: 2023-05-11 10:02:09 浏览: 102
好的,这是一个关于深度学习的编程问题。以下是一个使用 PyTorch 设计的深度网络的示例代码,可以将输入尺寸为 [256,1,16] 的图像转换为输出尺寸为 [3,64,256] 的图像:
```python
import torch
import torch.nn as nn
class DeepNet(nn.Module):
def __init__(self):
super(DeepNet, self).__init__()
# Convolutional layers for downsampling
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1)
# Transposed convolutional layers for upsampling
self.conv_transpose1 = nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv_transpose2 = nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1)
self.conv_transpose3 = nn.ConvTranspose2d(16, 3, kernel_size=3, stride=2, padding=1, output_padding=1)
def forward(self, x):
# Downsample the input
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.conv3(x)
x = nn.functional.relu(x)
# Upsample the output
x = self.conv_transpose1(x)
x = nn.functional.relu(x)
x = self.conv_transpose2(x)
x = nn.functional.relu(x)
x = self.conv_transpose3(x)
x = nn.functional.relu(x)
return x
# Create an instance of the network
net = DeepNet()
# Create a random input tensor
input_tensor = torch.randn(1, 1, 256, 16)
# Pass the input through the network
output_tensor = net(input_tensor)
# Print the output tensor shape
print(output_tensor.shape)
```
这个网络包含了三个卷积层和三个反卷积层,用于下采样和上采样。其中,卷积层使用了 3x3 的卷积核和 2 的步长进行下采样,反卷积层使用了 3x3 的卷积核和 2 的步长进行上采样。在每个卷积层和反卷积层之间,我们使用了 ReLU 激活函数来增加网络的非线性性。
我们可以使用这个网络来将输入尺寸为 [256,1,16] 的图像转换为输出尺寸为 [3,64,256] 的图像。在上面的代码中,我们创建了一个随机的输入张量,将其传递给网络,并打印了输出张量的形状。
阅读全文