yolov7 的正负样本分配
时间: 2023-09-25 16:09:36 浏览: 113
yolov7的正负样本分配策略是结合了yolov5和YOLOX的方法。具体来说,yolov7采用了anchor base的目标检测算法,并且借鉴了yolov5和YOLOX的正负样本分配策略。在正样本分配方面,yolov7利用了yolov5的方法,通过计算真实框与先验框的IoU值来确定哪些先验框与目标匹配。而在负样本分配方面,yolov7则借鉴了YOLOX的方法,采用了难负样本挖掘的思想,将与目标IoU值较大的先验框也标记为负样本。这种综合的正负样本分配策略使得yolov7在目标检测任务中具有更好的性能和准确性。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [yolov7~正负样本分配](https://blog.csdn.net/qq_29788741/article/details/131263286)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [YOLOv7 | 模型结构与正负样本分配解析](https://blog.csdn.net/weixin_44751294/article/details/126555068)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文