生成对抗网络损失函数
时间: 2023-09-18 11:14:47 浏览: 24
生成对抗网络的损失函数是通过对抗训练中的生成器和判别器之间的竞争来定义的。在WGAN中,生成器的损失函数可以通过以下方式计算:g_loss = adverisal_loss(discriminator(gen_imgs), real)。其中,adverisal_loss是判别器的损失函数,gen_imgs是生成器生成的图像,real是真实的图像。生成器的损失函数是通过将生成器生成的图像输入判别器,并将其与真实图像进行比较来计算的。
在WGAN-GP中,还引入了梯度惩罚的方法以替代权值剪裁。梯度惩罚的目的是确保函数在任何位置的梯度都小于1,以避免梯度爆炸和梯度消失的问题。通过在目标函数中添加惩罚项,根据网络的输入来限制对应判别器的输出。具体而言,WGAN-GP使用了梯度惩罚方法来解决WGAN中的问题,其中对判别器的输出进行了限制。
总结起来,生成对抗网络的损失函数可以通过对判别器和生成器之间的竞争来定义。在WGAN中,使用了adverisal_loss作为生成器的损失函数,并通过梯度剪裁或梯度惩罚的方法来改进网络的性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [对抗生成网络(GAN)中的损失函数](https://blog.csdn.net/L888666Q/article/details/127793598)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [生成对抗网络(四)-----------WGAN-GP](https://blog.csdn.net/gyt15663668337/article/details/90271265)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
相关推荐
















