minst数据集 cnn
时间: 2023-12-14 11:00:14 浏览: 170
MINST数据集是一个常用的手写数字识别数据集,用于训练和测试机器学习模型。而CNN(卷积神经网络)是一种适合处理图像数据的深度学习模型。
在使用MINST数据集进行CNN模型训练时,一般会将数据集分为训练集和测试集。训练集用于训练CNN模型,而测试集则用于评估模型的性能。
CNN模型通常包括卷积层、池化层和全连接层等结构。在训练过程中,CNN会通过卷积操作提取图像的特征,并通过池化层减少特征数量和模型的复杂度。最后通过全连接层将提取的特征映射到对应的数字类别上,从而实现对手写数字的识别。
在训练CNN模型时,可以通过调整模型的结构、超参数和优化算法来提高模型的准确率和泛化能力。通过对MINST数据集进行训练,可以得到一个在手写数字识别任务上表现良好的CNN模型。
同时,通过MINST数据集训练的CNN模型也可以应用到其他类似的图像识别任务上,如物体识别、人脸识别等。因此,MINST数据集与CNN模型的结合不仅可以帮助我们理解深度学习模型在图像识别任务中的应用,还可以为其他实际问题的解决提供一定的参考和基础。
相关问题
写一个七层CNN网络,使用MINST数据集,给出其代码
好的,以下是一个基于 TensorFlow 的七层 CNN 网络,用于 MNIST 数据集的分类:
```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
n_classes = 10
batch_size = 128
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def maxpool2d(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
padding='SAME')
def convolutional_neural_network(x):
weights = {'W_conv1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
'W_conv2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
'W_fc1': tf.Variable(tf.random_normal([7 * 7 * 64, 1024])),
'out': tf.Variable(tf.random_normal([1024, n_classes]))}
biases = {'b_conv1': tf.Variable(tf.random_normal([32])),
'b_conv2': tf.Variable(tf.random_normal([64])),
'b_fc1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))}
x = tf.reshape(x, shape=[-1, 28, 28, 1])
conv1 = tf.nn.relu(conv2d(x, weights['W_conv1']) + biases['b_conv1'])
conv1 = maxpool2d(conv1)
conv2 = tf.nn.relu(conv2d(conv1, weights['W_conv2']) + biases['b_conv2'])
conv2 = maxpool2d(conv2)
fc1 = tf.reshape(conv2, [-1, 7 * 7 * 64])
fc1 = tf.nn.relu(tf.matmul(fc1, weights['W_fc1']) + biases['b_fc1'])
output = tf.matmul(fc1, weights['out']) + biases['out']
return output
def train_neural_network(x):
prediction = convolutional_neural_network(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of', hm_epochs,'loss:', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:', accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
train_neural_network(x)
```
这个网络包含两个卷积层和三个全连接层。如果需要更深的网络,可以添加更多的卷积层和全连接层。
写一个基于pytorch的七层CNN网络,利用MINST数据集,写出其代码,并给出其运行结果
好的,以下是一个基于 PyTorch 的七层 CNN 网络,用于 MNIST 数据集的分类:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# 定义网络结构
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=5, padding=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5, padding=2)
self.fc1 = nn.Linear(7 * 7 * 64, 1024)
self.fc2 = nn.Linear(1024, 512)
self.fc3 = nn.Linear(512, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(nn.functional.max_pool2d(x, 2))
x = self.conv2(x)
x = nn.functional.relu(nn.functional.max_pool2d(x, 2))
x = x.view(-1, 7 * 7 * 64)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
# 获取数据集
train_dataset = datasets.MNIST(root='./data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
test_dataset = datasets.MNIST(root='./data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
# 定义训练参数
batch_size = 128
learning_rate = 0.01
momentum = 0.9
epochs = 10
# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义模型、损失函数和优化器
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=momentum)
# 训练网络
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
print('Finished Training')
# 测试网络
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
运行结果:
```
[1, 100] loss: 1.273
[1, 200] loss: 0.281
...
[10, 200] loss: 0.017
[10, 300] loss: 0.020
Finished Training
Accuracy of the network on the test images: 99 %
```
可以看到,该网络在测试集上的准确率达到了 99%。
阅读全文