with torch.no_grad(): # `validate_loader`迭代器对验证集进行迭代,每次迭代都会计算模型的输出和损失,并记录最佳的准确率和模型参数 val_bar = tqdm(validate_loader, file=sys.stdout) for val_data in val_bar: val_images, val_labels = val_data outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, val_labels.to(device)).sum().item() val_accurate = acc / val_num writer.add_scalar('Loss/test', running_loss / train_steps, epoch) writer.add_scalar('Accuracy/test', val_accurate, epoch) print('[epoch %d] val_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) writer.add_graph(mynet, input) writer.close() print('Finished Training') 请详细解释这段代码

时间: 2024-04-25 16:26:39 浏览: 11
这段代码实现了一个基于PyTorch的模型训练的过程,主要包括以下几个步骤: 1. 使用PyTorch提供的no_grad()上下文管理器,关闭自动求导功能,避免在验证集上浪费计算资源。 2. 使用PyTorch提供的tqdm库,对验证集数据进行迭代,每次迭代都计算模型的输出和损失,并记录最佳的准确率和模型参数。 3. 使用PyTorch提供的torch.max()函数,对输出结果进行argmax操作,得到预测的类别标签。 4. 使用PyTorch提供的torch.eq()函数,计算预测结果和真实标签相等的数量,并累加计算正确的样本数。 5. 计算验证集的准确率,即正确样本数除以总样本数。 6. 使用PyTorch提供的tensorboardX库,将训练过程中的损失和准确率记录到TensorBoard中,方便后续的可视化分析。 7. 使用PyTorch提供的torch.save()函数,保存最佳模型的参数。 8. 输出当前训练的epoch数、验证集损失和准确率等信息。 总体来说,这段代码实现了一个基本的模型训练流程,包括数据迭代、模型计算、损失计算、反向传播等步骤,并将训练过程中的关键信息保存到TensorBoard中,方便后续的分析和展示。同时,在验证集上使用最佳模型参数进行验证,并保存最佳模型参数,以便后续使用。
相关问题

with torch.no_grad():

`torch.no_grad()` 是 PyTorch 中一个上下文管理器,在进入这个上下文环境后,PyTorch 不会记录对变量的任何操作,也不会计算梯度,这样可以节省内存和计算时间。常用于测试代码或评估模型时。 举个例子 ``` with torch.no_grad(): x = torch.randn(3, requires_grad=True) y = x * 2 print(y.requires_grad) # False ``` 这里我们用with torch.no_grad()禁止跟踪对tensor的操作,对于y来说也不需要求导,y.requires_grad 就是false 通常我们在评估模型时使用这个上下文管理器。 ``` with torch.no_grad(): model.eval() output = model(input) loss = criterion(output, target) ``` 在评估模型时不需要求导,我们可以使用 `torch.no_grad()` 上下文管理器,跳过计算梯度,从而提高计算速度和节省内存。

``` with torch.no_grad(): ```

`with torch.no_grad():` 是一个上下文管理,用于在PyTorch中禁用梯度计算。在这个上下文中,所有的操作都不会被记录在计算图中,也不会对梯度进行更新。这在进行推理或者评估模型时非常有用,因为我们通常不需要计算梯度。 在训练模型时,我们通常会使用`torch.autograd`来自动计算梯度并更新模型的参数。但是在推理或者评估模型时,我们只需要使用模型进行前向传播,而不需要计算梯度。因此,使用`with torch.no_grad():`可以提高代码的效率,并减少内存的消耗。 以下是一个示例,展示了如何使用`with torch.no_grad():`来禁用梯度计算: ```python import torch # 创建一个张量 x = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) # 在训练模式下计算梯度 with torch.no_grad(): # 在推理模式下进行前向传播 y = x * 2 z = y.mean() # 输出结果 print(y) # tensor([2., 4., 6.]) print(z) # tensor(4.) ``` 在上面的示例中,我们创建了一个张量`x`,并将`requires_grad`设置为True,以便在训练模式下计算梯度。然后,我们使用`with torch.no_grad():`来禁用梯度计算,并在推理模式下进行前向传播。最后,我们打印出结果`y`和`z`,它们都是在推理模式下计算得到的,没有梯度信息。

相关推荐

最新推荐

recommend-type

node-v0.10.9-sunos-x86.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

ARL-master-wade.zip

ARL-master-wade.zip
recommend-type

paralleled FLUS_V2.4.zip

paralleled FLUS_V2.4.zip
recommend-type

2121212111111111111111111

212111111111111
recommend-type

wx077企业内部员工管理系统-thinkphp5+vue+uniapp-小程序.zip(可运行源码+sql文件+)

wx077企业内部员工管理系统-thinkphp5+vue+uniapp-小程序.zip 企业内部员工管理系统是一个很好的项目,结合了后端(thinkphp5)、前端(Vue.js)和 uniapp 技术,实现了前后端分离。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。