with torch.no_grad(): # `validate_loader`迭代器对验证集进行迭代,每次迭代都会计算模型的输出和损失,并记录最佳的准确率和模型参数 val_bar = tqdm(validate_loader, file=sys.stdout) for val_data in val_bar: val_images, val_labels = val_data outputs = net(val_images.to(device)) predict_y = torch.max(outputs, dim=1)[1] acc += torch.eq(predict_y, val_labels.to(device)).sum().item() val_accurate = acc / val_num writer.add_scalar('Loss/test', running_loss / train_steps, epoch) writer.add_scalar('Accuracy/test', val_accurate, epoch) print('[epoch %d] val_loss: %.3f val_accuracy: %.3f' % (epoch + 1, running_loss / train_steps, val_accurate)) if val_accurate > best_acc: best_acc = val_accurate torch.save(net.state_dict(), save_path) writer.add_graph(mynet, input) writer.close() print('Finished Training') 请详细解释这段代码
时间: 2024-04-25 21:26:39 浏览: 110
这段代码实现了一个基于PyTorch的模型训练的过程,主要包括以下几个步骤:
1. 使用PyTorch提供的no_grad()上下文管理器,关闭自动求导功能,避免在验证集上浪费计算资源。
2. 使用PyTorch提供的tqdm库,对验证集数据进行迭代,每次迭代都计算模型的输出和损失,并记录最佳的准确率和模型参数。
3. 使用PyTorch提供的torch.max()函数,对输出结果进行argmax操作,得到预测的类别标签。
4. 使用PyTorch提供的torch.eq()函数,计算预测结果和真实标签相等的数量,并累加计算正确的样本数。
5. 计算验证集的准确率,即正确样本数除以总样本数。
6. 使用PyTorch提供的tensorboardX库,将训练过程中的损失和准确率记录到TensorBoard中,方便后续的可视化分析。
7. 使用PyTorch提供的torch.save()函数,保存最佳模型的参数。
8. 输出当前训练的epoch数、验证集损失和准确率等信息。
总体来说,这段代码实现了一个基本的模型训练流程,包括数据迭代、模型计算、损失计算、反向传播等步骤,并将训练过程中的关键信息保存到TensorBoard中,方便后续的分析和展示。同时,在验证集上使用最佳模型参数进行验证,并保存最佳模型参数,以便后续使用。
相关问题
def train(train_dataset, val_dataset, batch_size, epochs, learning_rate, wt_decay, print_cost=True, isPlot=True): # 加载数据集并分割batch train_loader = data.DataLoader(train_dataset, batch_size) # 构建模型 model = FaceCNN() # 加载模型 # model = torch.load('./model/model-best.pth') model.to(device) # 损失函数和优化器 compute_loss = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=learning_rate, weight_decay=wt_decay) loss_values = [] train_acc_values = [] val_acc_values = [] for epoch in range(epochs): loss = 0 model.train() model = model.to(device) for images, labels in train_loader: optimizer.zero_grad() # 梯度清零 outputs = model.forward(images.to(device)) loss = compute_loss(outputs, labels.to(device)) loss.backward() # 更新参数 optimizer.step() # 打印损失值 if print_cost: print('epoch{}: train_loss:'.format(epoch + 1), loss.item()) # 评估模型准确率 if epoch != 0: model.eval() acc_train = validate(model, train_dataset, batch_size) acc_val = validate(model, val_dataset, batch_size) print('acc_train: %.1f %%' % (acc_train * 100)) print('acc_val: %.1f %%' % (acc_val * 100)) train_acc_values.append(acc_train) val_dataset.append(acc_val) loss_values.append(loss.item()) if isPlot: plt.plot(loss_values, label='损失') plt.plot(train_acc_values, label='训练准确率') plt.plot(val_acc_values, label='验证准确率') plt.xlabel('Epoch') plt.ylabel('Value') plt.legend() plt.show() return model
这段代码是用来训练一个模型的函数。它接受训练集、验证集、批次大小、训练轮数、学习率、权重衰减等参数。函数首先加载训练集并构建一个模型对象。然后,定义了损失函数和优化器。接下来,函数通过循环迭代每个训练轮次,并在每轮中计算损失、更新参数,并打印损失值。如果 `print_cost` 参数设置为 True,则会打印出每个训练轮次的损失值。
在每个训练轮次结束后,函数会评估模型在训练集和验证集上的准确率,并打印出来。这里调用了之前定义的 `validate` 函数来计算准确率。
最后,函数可以选择绘制损失值、训练准确率和验证准确率的图像,并返回训练好的模型对象。
需要注意的是,这段代码中使用了一些常见的深度学习库函数和对象,如 PyTorch 的 DataLoader、CrossEntropyLoss、SGD 优化器等。此外,函数中还调用了之前定义的 `validate` 函数和一些绘图函数。
如果你还有其他问题或需要进一步解释,请随时告诉我!
def validate(self, dataloader, graph): self.model.eval() hrs, ndcgs = [], [] with torch.no_grad(): tqdm_dataloader = tqdm(dataloader) for iteration, batch in enumerate(tqdm_dataloader, start=1): user_idx, item_idx = batch rep, user_pool = self.model(graph) user = rep[user_idx] + user_pool[user_idx] item = rep[self.model.n_user + item_idx] preds = self.model.predict(user, item) preds_hrs, preds_ndcgs = self.calc_hr_and_ndcg(preds, self.args.topk) hrs += preds_hrs ndcgs += preds_ndcgs return np.mean(hrs), np.mean(ndcgs)
这是一个 `validate` 方法的定义,它接受两个参数 `dataloader` 和 `graph`。这个方法用于在模型训练过程中对验证集进行评估。
首先,将模型设置为评估模式,即 `self.model.eval()`。
然后,定义了两个空列表 `hrs` 和 `ndcgs`,用于存储每个样本的评估结果。
接下来,通过一个循环遍历 `dataloader`,每次迭代时从 `dataloader` 中获取一个批次的数据,其中 `user_idx` 和 `item_idx` 是从批次中获取的用户索引和物品索引。
使用模型 `self.model` 和图数据 `graph` 调用 `self.model` 的方法,得到用户和物品的表示,并计算预测结果 `preds`。
再调用 `self.calc_hr_and_ndcg()` 方法,根据预测结果和 `self.args.topk` 计算命中率和NDCG(归一化折损累计增益)。
将计算得到的命中率和NDCG分别添加到 `hrs` 和 `ndcgs` 列表中。
最后,在循环结束后,计算 `hrs` 和 `ndcgs` 的平均值,并返回这两个平均值作为评估结果。
注意,在整个验证过程中,没有进行模型参数更新,因此使用了 `torch.no_grad()` 上下文管理器来禁用梯度计算,以提高效率。
阅读全文