B样条弹性配准 公式讲解

时间: 2023-05-27 07:05:05 浏览: 72
B样条弹性配准是一种基于B样条插值函数的图像配准方法,它可以处理图像的形变、旋转、缩放等变换,并能够保持图像的光滑性和连续性。其应用广泛,例如医学影像配准、机器人视觉导航等领域。 B样条插值函数是一种基于局部控制点的插值函数,其可以通过对一些控制点的调整来实现对整个函数的变形。在B样条弹性配准中,每个图像都被表示为一个B样条网格,每个网格节点都对应一个控制点。通过对控制点的调整,可以实现对图像的变形。 B样条弹性配准的数学模型如下: $$ \min_{\mathbf{p}}\sum_{i=1}^{N}\|I(\mathbf{p},\mathbf{x}_i)-J(\mathbf{x}_i)\|^2+\alpha\int_{\Omega}\|\nabla^2 I(\mathbf{p},\mathbf{x})\|^2d\mathbf{x} $$ 其中,$\mathbf{p}$为B样条控制点的位置,$I(\mathbf{p},\mathbf{x}_i)$表示变形后的图像在点$\mathbf{x}_i$处的灰度值,$J(\mathbf{x}_i)$表示目标图像在点$\mathbf{x}_i$处的灰度值,$\alpha$为平滑项的权重,$\nabla^2$表示二阶导数,$\Omega$表示图像的整个区域。 该模型分为两个部分,第一部分为误差项,即要求变形后的图像与目标图像在每个像素点上的灰度值之间的差距最小;第二部分为平滑项,即要求变形后的图像在空间上尽可能平滑,以保持其局部连续性。 B样条弹性配准的求解过程可以通过迭代算法实现,具体步骤包括: 1. 初始化B样条控制点的位置; 2. 对于每个控制点,计算其在误差项中的梯度; 3. 对于每个控制点,更新其位置,使其沿着梯度方向移动一定的距离; 4. 重复步骤2和3,直到达到收敛条件为止。 通过这样的迭代过程,可以不断调整B样条控制点的位置,从而实现图像的变形。

相关推荐

最新推荐

recommend-type

二维点云配准+kd-tree相结合+三角剖分

对点云配对的指派问题进行更好的处理,从而得到更好的点云配准结果。本文采用的编程环境为MATLAB2022,文章末尾含ICP和icp与kd-tree相结合的核心代码即:放置的是函数文件,没有方式.m文件。 来源于大二期末大作业,...
recommend-type

手动配准基于Matlab

手动配准基于Matlab 手动配准是指通过选择匹配点对,计算变换参数,并将输入图像变换到基准图像的过程。Matlab 提供了多种手动配准方法,包括线性正投影、仿射、投影、多项式、分段线性和局部加权平均配准。 1. ...
recommend-type

ArcGIS影像配准与空间配准

ArcGIS影像配准与空间配准地图配准可分为影像配准和空间配准。影像配准的对象是raster图,譬如TIFF图。配准后的图可以保存为ESRI GRID, TIFF,或ERDAS IMAGINE格式。空间配准(Spatial Adjustment)是对矢量数据配准。
recommend-type

遗传算法对Powell图像配准方法的改进

标题“遗传算法对Powell图像配准方法的改进”探讨的是如何通过遗传算法优化Powell算法,以提高图像配准的精度和效率。图像配准是图像处理中的关键步骤,其目的是找到一种空间变换,使得两幅或多幅图像在相同的空间...
recommend-type

深度图像自动配准点云的方法研究

点云配准是三维激光扫描数据处理过程中不可或缺的一个环节,利用标靶进行配准是经典的手段之一, 此类方案在单独扫描标靶的基础上进行半自动化配准。本文给出一种配准策略,利用中心投影原理将单站扫描的 点云转换为...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。