matlab牛顿法求方程根的程序
时间: 2024-10-08 19:20:44 浏览: 94
在MATLAB中,可以使用`fzero`函数结合牛顿迭代法来寻找非线性方程的根。这是一个基本的牛顿法求解过程:
```matlab
function x = newtonMethod(f, df, initialGuess)
% f 是目标函数,df 是它的导数函数,initialGuess 是初始猜测值
options = optimoptions('fzero', 'Algorithm', 'newton'); % 设置优化选项
x = fzero(@(x) f(x), initialGuess, options); % 调用 fzero 函数
end
% 示例:假设我们有一个函数 f(x) = x^3 - 2x - 5,我们要找其零点
f = @(x) x.^3 - 2*x - 5; % 定义函数
df = @(x) 3*x.^2 - 2; % 计算函数的一阶导数
initialGuess = 1; % 初始猜测根的位置
solution = newtonMethod(f, df, initialGuess);
```
这个函数首先设置了一个优化选项,选择了牛顿法作为算法。然后调用 `fzero` 函数,传入目标函数、一阶导数函数以及初始猜测值。`fzero`会反复利用牛顿迭代公式 (`x_new = x_old - f(x_old) / f'(x_old)` ) 来逼近函数的零点。
相关问题
matlab牛顿法迭代法求方程x^3-x-1的根程序流程图
以下是MATLAB牛顿法和迭代法求解方程x^3-x-1的根的程序流程图。


阅读全文
相关推荐














