weightedrandomsampler导入数据代码python
时间: 2023-09-11 09:04:52 浏览: 192
以下是使用WeightedRandomSampler导入数据的Python代码示例:
```python
import torch
from torch.utils.data import DataLoader, WeightedRandomSampler
from torchvision import datasets, transforms
# 定义数据增强和标准化的转换
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 加载数据集
train_dataset = datasets.ImageFolder('train_dir', transform=transform)
# 定义每个类别的权重
class_weights = [1.0, 2.0, 3.0]
# 为每个样本分配权重
targets = train_dataset.targets
class_sample_count = torch.tensor(
[(targets == t).sum() for t in torch.unique(targets, sorted=True)])
weight = 1. / class_sample_count.float()
samples_weight = torch.tensor([weight[t] for t in targets])
# 创建WeightedRandomSampler实例
sampler = WeightedRandomSampler(samples_weight, len(samples_weight))
# 创建DataLoader实例
train_loader = DataLoader(train_dataset, batch_size=32, sampler=sampler)
```
在上面的示例中,我们首先定义了数据增强和标准化的转换,然后加载数据集。接下来,我们定义了每个类别的权重,并为每个样本分配了权重。最后,我们创建了一个WeightedRandomSampler实例,并将其传递给DataLoader实例。这将确保我们的模型在训练过程中按照我们定义的权重来处理每个类别的样本。
阅读全文