n_steps = 10 # 窗口大小为 10 n_length = 1 # 输出序列长度为 1 n_features = 5 # 特征数为 5 # Create a model def create_LSTM_model(X_train,n_steps,n_length, n_features): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) # cnn1d Layers # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model(X_train,n_steps,n_length, n_features) # summary print(model.summary())修改该代码,解决ValueError: Input 0 of layer "conv_lstm2d_11" is incompatible with the layer: expected ndim=5, found ndim=3. Full shape received: (None, 10, 5)问题
时间: 2023-12-09 07:04:53 浏览: 155
将以下代码:
```
X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features))
```
修改为:
```
X_train = X_train.reshape((X_train.shape[0], n_steps, n_features))
```
这样就可以解决该错误。同时,注意修改后输入层的shape也需要相应地修改为:
```
model.add(Input(shape=(n_steps, n_features)))
```
阅读全文