给我一份在pytorch框架下resnet34_unet的代码,输出特征图维度为3
时间: 2024-02-05 10:13:53 浏览: 107
好的,以下是在Pytorch框架下实现ResNet34_UNet网络的示例代码,输出特征图维度为3:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
class ResNet34_UNet(nn.Module):
def __init__(self, num_classes=3):
super(ResNet34_UNet, self).__init__()
# Encoder (ResNet34)
self.encoder = models.resnet34(pretrained=True)
self.relu = nn.ReLU(inplace=True)
# Decoder (UNet)
self.upconv1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
self.conv1 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(256)
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(128)
self.upconv3 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(64)
self.upconv4 = nn.ConvTranspose2d(64, 32, kernel_size=2, stride=2)
self.conv4 = nn.Conv2d(64, 32, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(32)
self.conv5 = nn.Conv2d(32, num_classes, kernel_size=1)
def forward(self, x):
# Encoder (ResNet34)
x1 = self.encoder.conv1(x)
x1 = self.encoder.bn1(x1)
x1 = self.relu(x1)
x1 = self.encoder.maxpool(x1)
x2 = self.encoder.layer1(x1)
x3 = self.encoder.layer2(x2)
x4 = self.encoder.layer3(x3)
x5 = self.encoder.layer4(x4)
# Decoder (UNet)
x = self.upconv1(x5)
x = torch.cat([x, x4], dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.upconv2(x)
x = torch.cat([x, x3], dim=1)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.upconv3(x)
x = torch.cat([x, x2], dim=1)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.upconv4(x)
x = torch.cat([x, x1], dim=1)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = self.conv5(x)
return x
```
其中,`num_classes` 表示输出的特征图的通道数,这里设置为3。如果需要调整输出特征图的通道数,只需修改 `num_classes` 的值即可。
阅读全文
相关推荐
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)