excel 多个工作簿合并分成多个工作表
时间: 2023-10-27 13:05:04 浏览: 362
你可以按照以下步骤将多个工作簿合并到一个工作簿中,并将它们分成多个工作表:
1. 打开一个新的 Excel 工作簿。
2. 选择“数据”选项卡,然后在“从文本/CSV”中选择“来自其他源”。
3. 在“来自其他源”对话框中,选择“从工作簿”选项,然后单击“下一步”按钮。
4. 在“选择要合并的工作簿”对话框中,单击“添加文件”按钮,然后选择要合并的工作簿。
5. 选择要合并的工作表,然后单击“下一步”按钮。
6. 在“选择数据的方式”对话框中,选择“按表格排列数据”,然后单击“下一步”按钮。
7. 在“导入数据”对话框中,选择“现有工作表”选项,并输入要创建的工作表名称。
8. 单击“完成”按钮,完成工作表合并。
重复以上步骤,将所有要合并的工作簿合并到同一个工作簿中,并将它们分成多个工作表。
相关问题
批量Excel 多个工作簿合并、拆分分成多个工作表vba代码
以下是一个将多个工作簿合并到一个工作表的VBA代码:
```
Sub MergeWorkbooks()
Dim MyPath As String, FilesInPath As String
Dim MyFiles() As String
Dim SourceRcount As Long, FNum As Long
Dim mybook As Workbook, BaseWks As Worksheet
Dim sourceRange As Range, destrange As Range
Dim rnum As Long, CalcMode As Long
' Change this to the path\folder location of your files.
MyPath = "C:\MyDocuments\"
' Add a slash at the end of the path if needed.
If Right(MyPath, 1) <> "\" Then
MyPath = MyPath & "\"
End If
' Set the file filter to find Excel files.
FilesInPath = "*.xlsx*"
' Set the first result file number to 0.
FNum = 0
' Loop through all files in the folder.
If Dir(MyPath & FilesInPath) = "" Then
MsgBox "No files found."
Exit Sub
End If
' Turn off calculation and screen updating.
With Application
CalcMode = .Calculation
.Calculation = xlCalculationManual
.ScreenUpdating = False
End With
' Set the base worksheet for the merge.
Set BaseWks = Workbooks.Add(xlWBATWorksheet).Worksheets(1)
' Loop through all files.
Do While Dir(MyPath & FilesInPath) <> ""
' Add to the file count.
FNum = FNum + 1
' Re-dimension the array to hold the new file name.
ReDim Preserve MyFiles(1 To FNum)
' Store the file name.
MyFiles(FNum) = Dir(MyPath & FilesInPath)
' Go to the next file name.
DirCount = DirCount + 1
Dir
Loop
' Set the starting row for the copy.
rnum = 1
' Loop through all files and worksheets, copying the data to the base worksheet.
For FNum = 1 To UBound(MyFiles)
Set mybook = Workbooks.Open(MyPath & MyFiles(FNum))
For Each sourceSheet In mybook.Worksheets
' Find the last row of data on the source worksheet.
SourceRcount = sourceSheet.Cells(Rows.Count, "A").End(xlUp).Row
' Set the source range.
Set sourceRange = sourceSheet.Range("A1:Z" & SourceRcount)
' Copy the data to the base worksheet.
Set destrange = BaseWks.Range("A" & rnum)
sourceRange.Copy destrange
' Increase the row counter.
rnum = rnum + SourceRcount
Next sourceSheet
mybook.Close savechanges:=False
Next FNum
' Turn on calculation and screen updating.
With Application
.Calculation = CalcMode
.ScreenUpdating = True
End With
' Auto-fit the columns on the base worksheet.
BaseWks.Columns.AutoFit
End Sub
```
以下是将工作表拆分为多个工作簿的VBA代码:
```
Sub SplitWorkbook()
Dim FileExtStr As String
Dim FileFormatNum As Long
Dim xWs As Worksheet
Dim xWb As Workbook
Dim FolderName As String
Dim Lrow As Long
Dim OutFolder As String
' Change this to the path\folder location where you want to save the new files.
OutFolder = "C:\MyDocuments\"
' Create a new folder for the output files.
If Len(Dir(OutFolder, vbDirectory)) = 0 Then
MkDir OutFolder
End If
' Only save the active sheet.
Set xWs = Application.ActiveSheet
' Get the file extension and format number.
FileExtStr = ".xlsx"
FileFormatNum = 51
' Find the last row of data on the active sheet.
Lrow = xWs.Cells(xWs.Rows.Count, "A").End(xlUp).Row
' Turn off calculation and screen updating.
Application.ScreenUpdating = False
Application.DisplayAlerts = False
' Loop through each row of data and save each row to a new file.
For i = 2 To Lrow
' Create a new workbook.
Set xWb = Application.Workbooks.Add
' Save the new workbook to the output folder.
FolderName = OutFolder & xWs.Cells(i, "A").Value & FileExtStr
' Save the active sheet to the new workbook in the output folder.
xWs.Rows(i).Copy
xWb.Worksheets(1).Range("A1").PasteSpecial xlPasteAll
' Save and close the new workbook.
xWb.SaveAs FolderName, FileFormatNum
xWb.Close False
Next i
' Turn on calculation and screen updating.
Application.ScreenUpdating = True
Application.DisplayAlerts = True
End Sub
```
注意,这些代码应该修改以适应您的具体情况。
基于pytorch写一个多对多预测代码,数据集名称为data.csv,前四列为特征,后面50列为标签,前800行为训练集其余为测试集,将其中一组预测值与真实值输出到excel工作表中
### 回答1:
下面是基于 PyTorch 实现的一个多对多分类预测代码示例:
```python
import torch
import pandas as pd
# 读入数据
data = pd.read_csv("data.csv")
X_train, y_train = data.iloc[:800, :4], data.iloc[:800, 4:]
X_test, y_test = data.iloc[800:, :4], data.iloc[800:, 4:]
# 转换为 PyTorch 张量
X_train, y_train = torch.tensor(X_train.values), torch.tensor(y_train.values)
X_test, y_test = torch.tensor(X_test.values), torch.tensor(y_test.values)
# 定义模型
class MultiClassifier(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc = torch.nn.Linear(4, 50)
def forward(self, x):
x = self.fc(x)
return x
model = MultiClassifier()
# 定义损失函数和优化器
loss_fn = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters())
# 训练模型
for epoch in range(100):
# 前向传播
y_pred = model(X_train)
# 计算损失
loss = loss_fn(y_pred, y_train)
# 梯度清零
optimizer.zero_grad()
# 反向传播
loss.backward()
# 更新参数
optimizer.step()
# 测试模型
y_pred = model(X_test)
# 将预测值与真实值输出到 Excel 工作表中
df = pd.DataFrame({"y_pred": y_pred.detach().numpy().ravel(), "y_test": y_test.numpy().ravel()})
df.to_excel("result.xlsx", sheet_name="prediction")
```
请注意,这仅是一个简单的示例,在实际使用中可能需要进行其他预处理和调参工作。
### 回答2:
首先,你需要将`data.csv`文件加载到你的Python代码中。你可以使用`pandas`库来读取csv文件的数据:
```python
import pandas as pd
# 读取data.csv文件
data = pd.read_csv('data.csv')
```
接下来,你需要将数据集分成训练集和测试集。根据问题描述,前800行是训练集,剩余的行是测试集:
```python
# 分割训练集和测试集
train_data = data.iloc[:800]
test_data = data.iloc[800:]
```
接下来,你需要定义一个PyTorch模型来进行多对多的预测。你可以使用`torch.nn`模块来定义神经网络模型。下面是一个简单的例子:
```python
import torch
import torch.nn as nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc = nn.Linear(4, 50)
def forward(self, x):
out = self.fc(x)
return out
# 创建模型实例
model = MyModel()
```
然后,你需要定义损失函数和优化器来训练模型。在这个例子中,我们使用`MSELoss`作为损失函数和`Adam`优化器:
```python
# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
```
接下来,你需要编写训练循环来训练你的模型。在每个epoch中,你需要计算预测值和真实值之间的损失,并进行反向传播和权重更新:
```python
# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
# 前向传播
inputs = train_data.iloc[:, :4].values
labels = train_data.iloc[:, 4:].values
inputs = torch.FloatTensor(inputs)
labels = torch.FloatTensor(labels)
outputs = model(inputs)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
```
最后,你可以使用训练好的模型来预测测试集的值,并将预测值和真实值输出到Excel工作表中。你可以使用`pandas`库将预测值和真实值合并为一个DataFrame,并将其写入Excel文件:
```python
# 测试模型
test_inputs = test_data.iloc[:, :4].values
test_labels = test_data.iloc[:, 4:].values
test_inputs = torch.FloatTensor(test_inputs)
test_labels = torch.FloatTensor(test_labels)
test_outputs = model(test_inputs)
# 将预测值和真实值合并为DataFrame
pred_df = pd.DataFrame(test_outputs.detach().numpy(), columns=['Pred_'+str(i) for i in range(50)])
true_df = pd.DataFrame(test_labels.detach().numpy(), columns=['True_'+str(i) for i in range(50)])
result_df = pd.concat([pred_df, true_df], axis=1)
# 输出到Excel工作表
result_df.to_excel('result.xlsx', index=False)
```
以上就是一个基于PyTorch编写的多对多预测代码的简单示例。请注意,这只是一个基本的框架,你可能需要根据你的具体需求进行适当的修改和调整。
### 回答3:
首先,我们需要导入所需的库,包括pytorch、pandas和openpyxl:
```python
import torch
import pandas as pd
from openpyxl import Workbook
```
然后,我们需要加载数据集,并将训练集和测试集分开:
```python
data = pd.read_csv('data.csv')
train_data = data.iloc[:800, :]
test_data = data.iloc[800:, :]
```
接下来,我们将特征和标签分开,并将它们转换为pytorch的张量:
```python
train_features = torch.tensor(train_data.iloc[:, :4].values, dtype=torch.float32)
train_labels = torch.tensor(train_data.iloc[:, 4:].values, dtype=torch.float32)
test_features = torch.tensor(test_data.iloc[:, :4].values, dtype=torch.float32)
test_labels = torch.tensor(test_data.iloc[:, 4:].values, dtype=torch.float32)
```
然后,我们需要定义一个多对多的预测模型。这里我们使用一个简单的全连接神经网络:
```python
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.hidden = torch.nn.Linear(4, 10)
self.output = torch.nn.Linear(10, 50)
def forward(self, x):
x = torch.relu(self.hidden(x))
x = self.output(x)
return x
model = Model()
```
接下来,我们需要定义损失函数和优化器:
```python
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
```
然后,我们开始训练模型:
```python
epochs = 1000
for epoch in range(epochs):
optimizer.zero_grad()
outputs = model(train_features)
loss = criterion(outputs, train_labels)
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
```
接下来,我们使用训练好的模型对测试集进行预测:
```python
predicted = model(test_features).detach().numpy()
```
最后,我们将预测值和真实值保存到Excel工作表中:
```python
# 创建一个新的工作簿
workbook = Workbook()
sheet = workbook.active
# 将预测值和真实值写入工作表中
for i in range(predicted.shape[0]):
for j in range(predicted.shape[1]):
sheet.cell(row=i+1, column=j+1, value=predicted[i][j])
workbook.save('predictions.xlsx')
```
这样就完成了基于pytorch的多对多预测代码,将一组预测值和真实值输出到Excel工作表中。
阅读全文