写一个用传统的图像处理技术中颜色提取来做蓝色安全帽检测的程序
时间: 2023-07-16 17:12:21 浏览: 75
深度学习 ,,安全帽检测
好的,以下是一个简单的蓝色安全帽检测程序:
1. 导入必要的库
```python
import cv2
import numpy as np
```
2. 读取图像
```python
img = cv2.imread("safety_helmet.jpg")
```
3. 将图像从BGR转换为HSV颜色空间
```python
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
```
4. 定义蓝色安全帽的颜色范围
```python
lower_blue = np.array([90,50,50])
upper_blue = np.array([130,255,255])
```
5. 在图像中提取蓝色区域
```python
mask = cv2.inRange(hsv, lower_blue, upper_blue)
```
6. 对二值图像进行形态学处理,以便更好地检测到目标
```python
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
```
7. 查找检测到的轮廓并绘制检测结果
```python
contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
area = cv2.contourArea(c)
if area > 500:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
```
8. 显示检测结果
```python
cv2.imshow("Safety Helmet Detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
完整代码如下:
```python
import cv2
import numpy as np
img = cv2.imread("safety_helmet.jpg")
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
lower_blue = np.array([90,50,50])
upper_blue = np.array([130,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours:
area = cv2.contourArea(c)
if area > 500:
x,y,w,h = cv2.boundingRect(c)
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow("Safety Helmet Detection", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
注意:这只是一个简单的例子,实际上在实际应用中,可能需要更复杂的图像处理和算法来检测蓝色安全帽。
阅读全文