Pytorch程序实现
时间: 2023-09-20 18:03:48 浏览: 103
pytorch教程
这里是一个简单的PyTorch程序实现MAPPO算法的示例:
首先,我们需要定义一个模型来表示每个智能体的策略。这里我们使用一个简单的神经网络模型来表示策略:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PolicyModel(nn.Module):
def __init__(self, obs_dim, act_dim):
super(PolicyModel, self).__init__()
self.fc1 = nn.Linear(obs_dim, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, act_dim)
def forward(self, obs):
x = F.relu(self.fc1(obs))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x), dim=-1)
return x
```
接下来,我们需要定义MAPPO算法的核心部分——优化器。这里我们使用PyTorch中的Adam优化器,并定义一个`compute_loss`函数来计算每个智能体的损失值:
```python
import torch.optim as optim
class MAPPO:
def __init__(self, obs_dim, act_dim, num_agents):
self.num_agents = num_agents
self.policy_model = PolicyModel(obs_dim, act_dim)
self.optimizer = optim.Adam(self.policy_model.parameters(), lr=3e-4)
def compute_loss(self, obs, act, adv, old_log_prob):
log_prob = torch.log(self.policy_model(obs))
prob_ratio = torch.exp(log_prob - old_log_prob)
surr1 = prob_ratio * adv
surr2 = torch.clamp(prob_ratio, 1 - 0.2, 1 + 0.2) * adv
policy_loss = -torch.min(surr1, surr2).mean()
entropy = -(log_prob * torch.exp(log_prob)).sum(-1).mean()
return policy_loss - 0.01 * entropy
def update(self, observations, actions, advantages, old_log_probs):
observations = torch.Tensor(observations)
actions = torch.Tensor(actions)
advantages = torch.Tensor(advantages)
old_log_probs = torch.Tensor(old_log_probs)
batch_size = observations.shape[0]
batch_idx = np.arange(batch_size)
for _ in range(10):
np.random.shuffle(batch_idx)
for start in range(0, batch_size, self.num_agents):
end = start + self.num_agents
mb_idx = batch_idx[start:end]
obs_batch = observations[mb_idx]
act_batch = actions[mb_idx]
adv_batch = advantages[mb_idx]
old_log_prob_batch = old_log_probs[mb_idx]
loss = self.compute_loss(obs_batch, act_batch, adv_batch, old_log_prob_batch)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
```
最后,我们需要定义一个主函数来使用MAPPO算法训练智能体:
```python
def main():
obs_dim = 10
act_dim = 2
num_agents = 4
mappo = MAPPO(obs_dim, act_dim, num_agents)
for _ in range(1000):
# 在环境中采样数据
observations, actions, rewards, next_observations, dones = sample_data()
# 计算每个智能体的优势值和旧的对数概率值
advantages, old_log_probs = compute_advantages_and_old_log_probs(observations, actions, rewards, next_observations, dones, mappo.policy_model)
# 更新策略网络
mappo.update(observations, actions, advantages, old_log_probs)
```
当然,这只是一个简单的示例,实际中还需要根据具体的问题和应用场景进行一定的修改和调整。
阅读全文