4-20ma保护电路图

时间: 2023-05-08 12:02:11 浏览: 110
4-20mA保护电路图是一种常用于保护工业控制系统中传感器和执行器的电路。它基于一个基本原理,即传感器和执行器产生的电流,正常情况下应该保持在4-20mA范围内,如果电流超出这个范围,就可能意味着出现了故障或损坏,此时需要及时进行保护。 为了实现这个基本原理,通常需要使用一些元件来实现电路保护。这些元件可以包括过压保护气动阀、过流保护电阻等等。具体的保护方式取决于所使用的元件和系统要求。 在一般情况下,4-20mA保护电路图通常会采用反馈电路和防过载保护电路。反馈电路负责检测传感器或执行器的电流是否在正常范围内,并将反馈信号发送到控制器以供处理。防过载保护电路则在电流超出设定范围时切断电路,以防止设备烧毁或其他问题发生。 总之,4-20mA保护电路图是一种重要的电路保护工具,用于保护工业控制系统中的传感器和执行器。通过使用反馈电路和防过载保护电路等元件,可以有效地保护设备不被损坏,从而提高整个系统的可靠性和稳定性。
相关问题

60个20ma恒流led的驱动电路图合集

### 回答1: 这是一系列60个20毫安恒流LED的驱动电路图合集。驱动电路图是用来控制LED的电流和亮度的,保证LED在正常工作范围内。每个电路图都包含一个电流源、电阻和二极管。电流源是用来提供恒定的电流,使LED的亮度保持稳定。电阻用来限制电流的流动,确保电流不会超过LED的额定值。LED是二极管,可以发光。 这个合集中的每个电路图都有不同的参数和连接方式,以适应不同的LED数量和电源情况。电路图中的元件可以根据实际需求进行选择和更改。例如,如果需要驱动更多的LED,可以增加电流源的输出容量和电阻的阻值。如果使用的是不同的电源电压,也可以调整电路中的元件数值,以适应不同的工作电压范围。 通过使用这个合集中的驱动电路图,可以方便地设计和搭建LED灯光系统。LED的恒定亮度和稳定工作电流,可以提高LED的寿命和效果。此外,这些电路图也提供了不同连接方式的多样性,可以根据需要来实现各种光效和灯光控制。 总之,这个60个20毫安恒流LED的驱动电路图合集为设计高质量的LED灯光系统提供了便利和灵活性。使用这些电路图,可以轻松满足各种驱动LED的需求,并实现理想的照明效果。 ### 回答2: 驱动60个20ma恒流LED的电路图合集可以根据具体需求进行设计,以下是一个可能的解决方案: 首先,我们选择一个适当的电源。由于每个LED的驱动电流为20mA,总共有60个LED,所以我们需要一个至少1.2A的电源。可以选择一个12V直流电源,其额定电流至少为1.2A。 接下来,我们需要设计一个恒流驱动电路。恒流驱动电路可以保证每个LED接收到稳定的电流,以确保它们的亮度一致。常见的恒流驱动电路有两种:电流源电路和可调电流电路。 电流源电路是最简单和常见的一种。它由一个电流源,一个电阻和一个电压源组成。电流源通过电阻提供恒定的电流给LED。为了驱动60个LED,我们可以将电流源设置为60*20mA=1.2A,并选择适当的电阻值来提供所需的电流。 可调电流电路具有灵活性,可以通过调节电压或电阻来调整驱动电流。它通常由一个稳流二极管和一个可变电阻组成。稳流二极管可以通过调节电压来提供不同的电流输出,而可变电阻用于精确地调整电流大小。 针对驱动60个LED的需求,可以使用6个10个LED的并联串联电路,每个并联串联电路驱动10个LED。每个并联串联电路可以采用相同的恒流驱动电路。 最后,为了确保整个驱动电路的工作稳定可靠,我们还应该考虑一些保护措施,如过流保护、过热保护和短路保护等。 总结起来,驱动60个20mA恒流LED的电路图合集包括一个适当的电源、恒流驱动电路(可选择电流源电路或可调电流电路)、并联串联电路、以及保护措施。该设计能够确保每个LED接收到稳定的电流,保证它们的亮度一致。

4~20ma信号隔离栅原理图

4~20ma信号隔离栅是一种常用的隔离电路,可以将输入信号与输出信号隔离开来,以保障被测设备的安全性和稳定性。其原理图如下: 该信号隔离栅由四部分组成:输入部分、隔离部分、输出部分和供电部分。 输入部分接收被测设备的4~20mA电流信号,通过虚地将其信号隔离。输入端孔负责接受输入信号,输入端桥路可以调节信号增益和参考电位,保证输入信号的精度和稳定性。 隔离部分是这个隔离电路的核心部分,包含单个磁隔离变压器和纯电驱动电路。隔离部分把输入信号等效为通过隔离变压器的磁场传输,将输入信号隔离,保证了输出信号的安全和稳定。同时,隔离部分实现了输入电路和输出电路的完全隔离,降低了电气噪声和电磁干扰对输出信号的影响。 输出部分是负责输出被隔离后信号的端口,输出部分一般使用信号放大器或其它放大器元件,在经过输出端桥路进行修正和调整后输出。输出端孔负责输出隔离后的4~20mA信号,输出端桥路则负责调整信号的增益和参考电位等参数。 最后是供电部分,为隔离电路提供工作电源,通常使用AC 220V/50Hz的交流电源,通过电源变压器对输入部分、隔离部分、输出部分进行供电。 综上所述,4~20ma信号隔离栅的实现是通过输入端接收被测信号,隔离部分将信号进行隔离,输出部分将隔离信号进行输出,以实现隔离和保护被测试设备的安全和稳定性。

相关推荐

### 回答1: 要实现输入24V输出5V,输入0V输出0V的装置,可以使用一个降压型稳压器(Buck型稳压器)。以下是一个简单的电路图: ![Buck Converter Circuit](https://i.imgur.com/6GwvZz3.png) 其中,元件R1和R2用于设置反馈电压,C1和C2用于滤波,D1是保护二极管,Q1是功率场效应晶体管(MOSFET),L1是电感,U1是稳压器芯片。 采用nano开发板可以实现对U1芯片的控制。U1芯片中有一个反馈引脚,可以通过程序控制该引脚的电压大小,从而调整输出电压。 为了实现输出电流为0-100mA级别,可以通过选取合适的电感和稳压器芯片来实现。同时,还需要注意稳压器芯片和电感的最大电流和功率。 需要注意的是,这个电路图只是一个简单的示例,具体实现还需要根据具体的需求进行调整。 ### 回答2: 要使用nano来设计一个输入24V输出5V,输入0V输出0V并且输出电流在0-100mA范围内的装置,可以按照以下步骤进行: 首先,我们需要一个电源模块来将输入的24V转换为5V。可以选择一个降压模块,通过调整其输出电压为5V,使得输入电压为24V时,输出电压为5V。这样,我们就可以将24V输入电压降至所需要的5V输出电压。 然后,我们需要一个电流控制模块来保证输出电流在0-100mA之间。可以使用一个电流检测模块来检测输出电流的大小,并将其反馈给控制模块。控制模块可以是一个可调电阻,通过调整电阻的阻值,来控制输出电流的大小。当输出电流超过100mA时,控制模块会自动减小输出电流,以保持在设定的范围内。 最后,需要一个开关模块来控制输入和输出的连接。当输入电压为0V时,开关模块会切断输入电路,使得输出电压也为0V。当输入电压为24V时,开关模块会接通输入电路,使得降压模块开始工作,并通过电流控制模块控制输出电流。 通过以上设计,我们可以实现一个使用nano的装置,满足输入24V输出5V,输入0V输出0V,并且输出电流在0-100mA范围内的要求。当输入电压为24V时,输出电压为5V,并且输出电流在设定范围内;当输入电压为0V时,输出电压也为0V,保持断开状态。 ### 回答3: 要制作一个输入24V输出5V的装置,并且输出电流为0-100mA级别,我们可以使用一个nano型号的直流稳压模块来实现。 首先,我们需要将24V输入电压连接到直流稳压模块的输入端。接下来,我们需要调整稳压模块的输出电压至5V。这可以通过稳压模块上的电位器来完成。我们可以使用一个螺丝刀或螺丝批来调整电位器,直到输出电压稳定在5V。 接下来,我们需要确保输出电流在0-100mA范围内。根据稳压模块的规格,它通常具有过载保护功能,可以限制输出电流。我们可以设置过载保护电流值为100mA,以确保输出电流不超过该值。 最后,我们需要连接负载到稳压模块的输出端。确保负载所需的电流在0-100mA之间。如果负载电流超过100mA,稳压模块将自动限制电流以保护设备。 综上所述,使用nano直流稳压模块可以制作一个输入24V输出5V,输出电流为0-100mA级别的装置。注意,调整电位器和设置过载保护电流时需要小心,以免损坏设备或造成其他不良后果。最好在制作之前参考该稳压模块的详细说明书。
### 回答1: 基于MA5332MS的振镜驱动是一种技术方案,用于驱动振动镜片或振动轴的设备。MA5332MS是一款集成化的振镜驱动芯片,具有高性能和稳定性。它是通过接收输入信号,并将其转换为电流信号,通过电流信号控制振动镜片或振动轴的运动。 基于MA5332MS的振镜驱动具有以下特点: 1. 高集成度:MA5332MS芯片具有高度集成的特点,除了振镜驱动功能外,还可以集成其他功能,如电源管理、信号调节等,大大简化了设备的设计和制造过程。 2. 稳定性和可靠性:MA5332MS采用高质量材料制造,具有长寿命和稳定的性能。它能够稳定输出所需的电流信号,确保振镜或振动轴的精确控制。 3. 高精度控制:MA5332MS芯片的驱动电路能够提供精确的输出电流信号,实现对振镜或振动轴的高精度控制。这对于一些需要高精度定位和调节的应用非常重要。 4. 低功耗设计:MA5332MS芯片采用低功耗设计,具有节能的特点。这可以延长设备的使用时间,同时也减少了能源消耗。 基于MA5332MS的振镜驱动可以应用于多个领域,如激光显示、光学测量、精密加工等。通过使用这种驱动方案,可以实现对振镜或振动轴的精确控制,满足不同应用的需求。 ### 回答2: 基于MA5332MS的振镜驱动是一种应用于光学仪器和设备中的驱动技术。MA5332MS是一款专业级的振镜驱动芯片,具有高性能和稳定性。 振镜驱动是指用电流或电压信号来控制振镜的运动,从而实现精确定位和调节的过程。振镜是一种能够在固定轴上以高频振动的装置,通过改变振镜的振动频率和振幅来控制光的方向和强度。 基于MA5332MS的振镜驱动具有以下特点: 1. 高稳定性:MA5332MS芯片采用了优质的材料和工艺,能够提供稳定的电流和电压输出,保证振镜的精确控制和运动。 2. 高精度:驱动芯片的设计和算法具有高精度的控制能力,能够实现微小的振幅和频率调节,满足对光信号的高精度定位需求。 3. 多功能性:MA5332MS芯片支持多种工作模式和控制方式,能够适应不同的应用场景和需求。它可以通过外部电路连接到控制器或微处理器,实现数字信号控制。 4. 低功耗:芯片采用先进的节能技术,具有低功耗和高效率的特点,适合长时间运行或电池供电的设备。 基于MA5332MS的振镜驱动在许多领域有广泛应用,如激光打标、光学成像、光通信等。它能够提供稳定、精确和高效的振镜控制,为这些领域的设备和系统提供良好的性能和可靠性。 ### 回答3: 基于ma5332ms的振镜驱动是一种使用MA5332MS芯片来驱动振镜的技术。MA5332MS是一种专门设计用于振镜控制的驱动芯片,它能够提供稳定的电压和电流输出,并能根据输入信号控制振镜的振动。 MA5332MS芯片具有低功耗和高效能的特点,适用于微型光学设备和显示屏的驱动。它采用了先进的数字控制技术,能够精确地控制振镜的振动频率和幅度。同时,该驱动芯片还具有保护功能,能够防止过流和过热等故障情况的发生,从而延长振镜的使用寿命。 基于MA5332MS的振镜驱动系统通常由主控芯片、MA5332MS芯片和外围电路等组成。主控芯片负责接收输入信号,并将信号转换成对MA5332MS芯片的控制信号。MA5332MS芯片接收控制信号后,驱动振镜进行振动。 基于MA5332MS的振镜驱动技术可以应用于很多领域。例如,它可以被用于激光投影仪中,通过控制振镜的振动来实现图像的投射。此外,它还可以应用于激光打印机、扫描仪、光纤通信设备等领域。 总之,基于MA5332MS的振镜驱动技术是一种高效、稳定且具有保护功能的驱动方案,能够满足各种振镜驱动应用的需求。
### 回答1: Keithley 2306电源是一款高性能的多合一直流电源,它具有多种功能和特点。 首先,Keithley 2306具有双通道输出,每个通道都可以提供独立的电压和电流控制。这意味着用户可以同时控制两个电路或设备的供电,提高工作效率。 其次,Keithley 2306电源具有广泛的电压和电流范围。电压范围从0V到30V,电流范围从0A到3A,用户可以根据具体需要调整输出参数。 第三,Keithley 2306电源具有高精度的输出和测量能力。它可以提供高达1mV的电压分辨率和1mA的电流分辨率,确保了精准的电源控制和测量结果。 此外,Keithley 2306电源还具有多种保护功能,如过压保护、过流保护和过热保护,可确保设备和电路的安全运行。 在使用Keithley 2306电源时,首先需要将电源插入电源插座并打开电源开关。接下来,用户可以使用面板上的旋钮或仪器上的按键来设置所需的电压和电流输出。在设定完毕后,用户可以通过接线端子将电源输出连接到需要供电的设备或电路上。 最后,使用Keithley 2306电源时需要注意保持仪器的周围环境清洁,避免与水、腐蚀性物质等接触。并且在使用过程中,应遵循安全操作规程,确保自身和设备的安全。 总之,Keithley 2306电源是一款功能强大、易于使用和安全可靠的直流电源,适用于各种实验室和工程应用。 ### 回答2: Keithley 2306是一种高精度的多通道电源,适用于各种电子设备的测试和研究。它具有多项强大功能和方便的操作界面。 首先,Keithley 2306具有6个独立的输出通道,每个通道的电源电压和电流都可根据用户需要进行设置。这使得它能够满足不同设备的多通道供电需求。 其次,用户可以通过直观的前面板操作界面或通过RS-232和GPIB接口来控制和监测电源的各种参数和工作状态。这些接口使得用户能够方便地与其他测试设备进行连接和协同工作,实现复杂的测试方案。 此外,Keithley 2306还具有多种保护功能,如过流保护、过压保护和过热保护等。这些保护功能可以确保设备在测试过程中不会受到损坏,提高了测试的可靠性和保障了设备的安全性。 最后,Keithley 2306还包括各种附加功能,如存储和恢复设备设置、实时监测输出电流和电压的稳定性等。这些功能能够方便用户对设备进行操作和监测,提高了测试的便捷性和效率。 总而言之,Keithley 2306是一种功能强大且易于操作的多通道电源。它广泛应用于各种领域的测试和研究工作,能够提供高精度、稳定的电源供应,并具备多种保护功能和附加功能。通过使用手册中提供的详细说明,用户可以更好地了解和使用该设备,提高测试效果和工作效率。 ### 回答3: Keithley 2306电源是一种高性能的直流电源,使用手册为用户提供了关于该电源的详细信息和操作指南。 首先,该电源具有多种输出模式,包括恒压输出模式和恒流输出模式。在恒压输出模式下,用户可以设置所需的输出电压,并通过自动调整电流来保持恒定。在恒流输出模式下,用户可以设置所需的输出电流,并通过自动调整电压来保持恒定。此外,用户还可以设置过电压保护和过流保护功能以保护被测电路。 其次,使用手册介绍了电源的各种操作控制方式。用户可以通过前面板上的按键进行手动操作,也可以通过远程控制接口进行远程控制。远程控制接口支持多种通讯协议,如USB和GPIB接口,用户可以根据需要选择适合的接口进行控制。 此外,使用手册还提供了关于安全使用电源的注意事项和操作建议。用户应遵循文档中的指导,确保正确连接电源和被测电路,并避免电源过载或短路等意外情况。此外,文档还介绍了电源的维护和校准方法,以确保电源的稳定性和准确性。 最后,使用手册还提供了关于故障排除和常见问题解答的信息,帮助用户解决操作中遇到的各种问题。用户可以通过参考手册中的故障排除流程图和解决方案来解决问题,并在遇到无法解决的问题时,可以联系厂家的技术支持团队进行进一步的协助。 总之,Keithley 2306电源使用手册为用户提供了全面的信息和指南,使用户能够正确操作和维护该电源,并有效地解决在使用过程中可能遇到的问题。
### 回答1: LM358ADR是一种低功耗、双路运算放大器芯片,具有较高的输入阻抗和较低的功耗特性。它在很多电路应用中广泛使用。 首先,在数据手册中,可以找到关于LM358ADR的电气特性参数。例如,它的供电电压范围一般为3V至32V,输出电流可达到20mA,工作温度范围在-40摄氏度至125摄氏度之间等等。这些参数对于设计和选型非常重要,可以根据具体的应用要求来选择合适的工作条件。 其次,数据手册还介绍了LM358ADR的功能特性。它是一款功能强大的运算放大器,可在宽幅度范围内对输入信号进行放大,并可实现电压传输和电流传输。除了基本的放大功能外,它还具有输入失调电流低、输入失调电压低、失调电流温漂小等特点,以及短路和过温保护等功能。 此外,数据手册还提供了LM358ADR的引脚功能图和引脚配置,这对于使用者来说是非常重要的信息。用户可以根据手册上的引脚图来正确地连接LM358ADR,并通过了解每个引脚的功能,来实现所需的电路设计。 最后,在数据手册中可能还提供了关于LM358ADR应用电路的参考设计和应用注意事项等信息。这些内容可以帮助用户更好地理解如何正确应用LM358ADR,并避免一些常见的问题和误用。 综上所述,LM358ADR数据手册是一本非常重要的参考资料,它提供了关于该芯片的详细信息,包括电气特性、功能特性、引脚功能和应用注意事项等,为用户在电路设计和选型中提供了重要的帮助。 ### 回答2: LM358ADR是一种双通道运算放大器,常用于触摸按键、低噪声放大器、比较器、滤波器、信号调理和逆变器等应用。该芯片具有低功耗、高增益、高输入阻抗和宽电压范围等特点。 在数据手册中,我们可以了解到LM358ADR的电气特性和工作条件。该芯片的工作电压范围为3V至32V,工作温度范围为-40℃至+125℃,因此在不同的环境条件下都能正常工作。输入电阻可以达到100MΩ,这使得它能够接收来自不同信号源的弱信号。此外,LM358ADR还具有高增益(100dB)和宽带宽(1.2MHz),可满足各种应用需求。 此外,在数据手册中还提供了芯片的引脚功能和引脚布局图,以及外部电路的建议和应用电路示例。这些信息可以帮助工程师们更好地设计和使用LM358ADR。 总结来说,LM358ADR是一种功能强大的双通道运算放大器,适用于各种应用。数据手册提供了详细的电气特性、引脚功能和电路示例,使用户能够充分了解和应用该芯片。 ### 回答3: LM358ADR是一种运算放大器,广泛用于电子设备的放大和信号处理电路中。该器件由两个独立的运算放大器组成,可以接收和放大差分输入信号。其工作电源范围为3V至32V,具有低功耗和高共模抑制比等特性。 在LM358ADR的数据手册中,详细介绍了该器件的电气特性、引脚功能和应用电路示例。其中,电气特性描述了LM358ADR在不同工作条件下的主要参数,如输入偏置电流、输入偏置电压、增益带宽积等。引脚功能说明了每个引脚的名称和功能,包括正输入端、负输入端、输出端等。 此外,数据手册还提供了LM358ADR的典型应用电路示例,如比较器、滤波器和放大器等。这些示例可以帮助用户正确选择器件配置和外部元件,以满足特定的应用要求。 数据手册中还包含了电特性曲线图和表格,方便用户了解器件的性能数据和参数范围。此外,还提供了工作条件、应用建议和封装尺寸等额外信息,帮助用户更好地理解和使用LM358ADR。 总之,LM358ADR数据手册为用户提供了详细的器件信息和应用指导,方便用户在设计和实施电路时选择和使用该器件。通过阅读和理解数据手册,用户可以充分发挥LM358ADR的功能特性,实现各种电子设备中的信号放大和处理功能。
### 回答1: ULN2803是一种常见的集成电路芯片,也称为高电流驱动器。它是由8个达林顿输出级联而成,每个线路可以提供500mA的工作电流。ULN2803适用于控制高电压和高电流负载,如继电器、步进电机等。 ULN2803中文手册为用户提供了该芯片的详细技术规格和使用方法。手册中包括了该芯片的引脚功能描述,输入电压范围,电流和功率特性,以及输出级的基本工作原理等。 手册中还介绍了ULN2803的典型应用场景和电路连接图。用户可以根据手册中的示例图和电路设计建议,将ULN2803与其他电子元器件结合使用,以实现各种功能需求。 此外,手册也提供了关于ULN2803的静态和动态特性的测试方法。用户可以通过手册中给出的实验步骤,测试ULN2803在不同工作条件下的性能指标,以确保其稳定可靠的工作。 总之,ULN2803中文手册为用户提供了关于该芯片的详细技术资料和应用指导。用户可以通过阅读手册,全面了解ULN2803的特性和工作原理,以便正确使用和应用该芯片。 ### 回答2: ULN2803是一种常用的NPN硅晶体管阵列驱动器,主要用于直接驱动高电流负载,如继电器、步进电机和显示器。该驱动器具有8个独立的通道,每个通道都具有一个完整的双极晶体管输出阶级,可承受高达500mA的电流。 ULN2803适用于工业自动化领域,特别是在需要控制多个高电流负载的应用中。由于其内部有保护二极管,因此可以用于反电动势保护电路。此外,ULN2803还具有内部抵消阻尼电路,可减少负载开关时的电磁干扰。 使用ULN2803时,需要将输入端口与驱动器的输入端连接。输入端口可以是逻辑信号,如微控制器的输出引脚,通常由低电平驱动。每个通道都有一个输入端和一个共同的集电极端。当输入信号为高电平时,相应的输出通道将被拉低,允许电流通过输出端。 在连接负载时,需要注意输出电流的限制和负载的电压要求。如果需要驱动更大的负载电流,可以通过连接多个ULN2803并行来实现。 总之,ULN2803是一种功能强大、可靠性高的驱动器,适用于控制高电流负载的应用。在使用时,需要明确输入信号的电平和连接负载的要求,以确保正确和稳定的操作。 ### 回答3: ULN2803是一种针对电子设备的功率器件,它是一种高电压和高电流驱动的应用集成电路。该组件的中文手册提供了有关该器件的详细信息以及如何正确使用和应用它的指导。 中文手册首先会介绍ULN2803的一般特性和应用领域。它会讲解该器件的工作原理、引脚功能和功能特点,帮助用户了解该器件的基本概念和工作方式。此外,手册还会提供器件的绝对最大额定值和电气特性,以及器件外观和封装的详细描述。 手册还会详细介绍ULN2803的使用方法和应用电路。它会讲解如何正确连接器件的控制与驱动电路,以及如何使其与其他电子元件和外部设备配合工作。手册还会提供不同应用场景下的电路设计示例,帮助用户快速掌握如何应用ULN2803进行电路设计和系统集成。 此外,手册还会介绍器件的工作条件和参数,帮助用户了解器件的工作稳定性和可靠性要求。它会提供器件的温度特性、电流特性和功率特性等详细信息,以及器件的典型应用和实际案例。 总之,ULN2803的中文手册提供了全面且详细的信息,旨在帮助用户了解、选型和应用该器件。用户可以通过阅读手册来获取关于ULN2803的一切所需信息,以确保正确使用该器件,并在不同应用场景下取得最佳性能和效果。
### 回答1: INA226是一款集成电路芯片,用于测量直流电流、电压和功耗。它具有高精度和低功耗的特点,并且可以通过I2C接口进行通信。INA226是一款非常有用的器件,广泛应用于电池管理系统、电源管理、工业自动化等领域。 INA226中文数据手册提供了详细的技术规格和使用说明,帮助用户更好地理解和使用这款芯片。 在手册中,我们可以找到有关电路原理图、引脚功能和供电要求的介绍。手册详细描述了芯片的工作原理和测量精度,以及如何校准和设置芯片的参数。 该手册还提供了INA226的I2C通信协议,包括地址选择和数据传输格式。用户可以通过I2C总线与芯片进行通信,并读取或写入寄存器中的数据。 除了基本的功能说明,手册还包括了一些应用案例和建议。例如,在电池系统中,用户可以使用INA226监测电池的充放电情况,确保电池的工作状态和安全性。 总而言之,INA226中文数据手册是使用和了解这款芯片所必需的工具。它提供了重要的技术信息和使用说明,使用户能够在设计和应用中充分利用INA226的功能。 ### 回答2: INA226是一种高精度、低功耗的电流/电压监测芯片。在INA226中文数据手册中,详细介绍了该芯片的功能、特性、电气参数和应用示例等内容。 首先,该手册描述了INA226的功能。它能够测量直流电流、总线电压和负载电压,可以通过I2C接口与主控器通信,并提供精确的电流和电压数据。此外,INA226还具有配置寄存器、状态寄存器和报警功能,支持多种模式和采样率选择,方便以不同方式使用。 其次,手册详细列出了INA226的电气参数。例如,芯片的供电电压范围为2.7V至5.5V,工作温度范围为-40°C至+85°C,以及最大测量电流和电压的范围等。这些参数对于用户在设计和使用过程中选择适当条件非常有帮助。 此外,手册还展示了应用示例和电路原理图,以便用户更好地理解和使用INA226。应用示例包括如何在太阳能电池系统中监测电流和电压、如何构建电池充放电系统以及如何进行家电监控等等。这些示例可以帮助用户根据具体需求实际操作。 最后,手册中还包括了对特殊功能和命令的详细介绍。如如何设置报警阈值、如何读取和配置寄存器、如何处理过流和欠压等异常情况等。这些内容使用户能够更好地理解和实施INA226的功能和特性。 总之,INA226中文数据手册是一个非常有用的工具,通过详细介绍芯片的功能、特性、电气参数和应用示例等内容,帮助用户更好地理解和使用该芯片。 ### 回答3: INA226是一款集电压、电流和功率监测功能于一体的电流传感器芯片。它能够通过I2C接口与主控芯片进行通信,并提供高精度的电压、电流和功率测量结果。 INA226具有较高的测量精度,电压测量精度为±0.1%,电流测量精度为±0.2%,功率计算误差不超过1%。它采用了16位的模数转换器,具有较高的分辨率和精确度,能够满足工业、通信、汽车等应用场景对精密电流监测的需求。 INA226具有多种保护功能,包括过流保护、过热保护和欠压保护等。当电流或温度超过设定的阈值时,芯片会及时采取保护措施,保证系统的安全稳定运行。 INA226采用了低功耗设计,工作电流仅为1.4mA,待机电流为0.5μA,能够有效降低功耗和热耗,提高系统的效率和使用寿命。 INA226还支持电流零漂移校准和基线校准功能,可以实时校准电流和功率测量结果,提高测量的准确性和可靠性。 除了具备强大的功能和性能外,INA226还提供了详尽的中文数据手册,方便用户使用和开发。手册中包含了芯片的详细特性、引脚功能、通信协议、电气特性、工作模式和寄存器配置等内容,用户可以根据手册完成芯片的应用设计和编程。 总之,INA226是一款功能强大、精度高、保护完善的电流传感器芯片,通过中文数据手册能够帮助用户更好地了解和应用该芯片,在电压、电流和功率监测方面提供可靠的解决方案。
.doc
SG3525引脚功能介绍 1.1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。 1.2.Noninv.input(引脚2):误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 1.3.Sync(引脚3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。 1.4.OSC.Output(引脚4):振荡器输出端。 1.5.CT(引脚5):振荡器定时电容接入端。 1.6.RT(引脚6):振荡器定时电阻接入端。 1.7.Discharge(引脚7):振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。 1.8.Soft-Start(引脚8):软启动电容接入端。该端通常接一只5的软启动电容。 1.9.Compensation(引脚9):PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 1.10.Shutdown(引脚10):外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。 1.11.OutputA(引脚11):输出端A.引脚11和引脚14是两路互补输出端。 1.12.Ground(引脚12):信号地。 1.13.Vc(引脚13):输出级偏置电压接入端。 1.14.OutputB(引脚14):输出端B.引脚14和引脚11是两路互补输出端。 1.15.Vcc(引脚15):偏置电源接入端。 1.16.Vref(引脚16):基准电源输出端。该端可输出一温度稳定性极好的基准电压。   2.特点如下: 2.1.工作电压范围宽:8—35V; 2.2. 5.1(11.0%)V微调基准电源。 2.3.振荡器工作频率范围宽:100Hz---400KHz. 2.4.具有振荡器外部同步功能。 2.5.死区时间可调。 2.6.内置软启动电路。 2.7.具有输入欠电压锁定功能。 2.8.具有PWM琐存功能,禁止多脉冲。 2.9.逐个脉冲关断。 2.10.双路输出(灌电流/拉电流):mA(峰值)。.   3.SG3525逆变器电路图 逆变器(inverter)是把直流电能(电池/蓄电瓶)转变成交流电(一般为220V50HZ正弦或方波)。应急电源,一般是把直流电瓶逆变成220V交流的。通俗的讲,逆变器是一种将直流电(DC)转化为交流电(AC)的装置。它由逆变桥、控制逻辑和滤波电路组成。广泛适用于空调/家庭影院/电动砂轮/电动工具/缝纫机/DVD/VCD/电脑/电视/洗衣机/抽油烟机/冰箱/录像机/按摩器/风扇/照明等.
application/msword
实验一 程控交换原理实验系统及控制单元实验 一、 实验目的 1、熟悉该程控交换原理实验系统的电路组成与主要部件的作用。 2、体会程控交换原理实验系统进行电话通信时的工作过程。 3、了解CPU中央集中控制处理器电路组成及工作过程。 二、 预习要求 预习《程控交换原理》与《MCS-51单片计算机原理与应用》中的有关内容。 三、 实验仪器仪表 1、主机实验箱 一台 2、三用表 一台 3、电话单机 四台 四、 实验系统电路组成 (一)电路组成 图1-1是该实验系统的原理框图 图1-1 实验系统的原理框图 图1—2是该实验系统的方框图,其电路的组成及主要作用如下: 1、用户模块电路 主要完成BORSCHT七种功能,它由下列电路组成: A、 用户线接口电路 B、 二\四线变换器 C、 PCM编译码电路 用户线接口电路 二/ 四线变换器 二/四线变换器 用户线接口电路 用户1 PCM CODEC电路 PCM CODEC电路 用户3 用户线接口电路 二/ 四线变换器 二/ 四线变换器 用户线接口电路 用户2 PCM CODEC电路 PCM CODEC电路 用户4 时钟信号电路 控制、检测电路 输出显示电路 二次稳压电路 多种信号音电路 CPU中央处理器 键盘输入电路 直流电源 图1-2 实验系统方框图 2、交换网络系统 主要完成空分交换与时隙交换两大功能,它由下列电路组成: A、空分交换网络系统 B、时隙交换网络系统 3、多种信号音电路 主要完成各种信号音的产生与发送,它由下列电路组成: A、450Hz拨号音电路 B、忙音发生电路 C、回铃音发生电路 D、25Hz振铃信号电路 4、CPU中央集中控制处理器电路 主要完成对系统电路的各种控制,信号检测,号码识别,键盘输入信息,输出显示信息等各种功能。 5、系统工作电源 主要完成系统所需要的各种电源,本实验系统中有+5V,-5V,+12V,-12V,-48V等5组电源,由下列电路组成: A、内置工作电源:+5V,+12V,-12V,-48V B、稳压电源: -8V,-5V 控制部分就是由CPU中央处理系统、输入电路(键盘)、输出电路(数码管)、双音多频DTMF检测电路、用户环路状态检测电路、自动交换网络驱动电路与交换网络转换电路、扩展电路、信号音控制电路等电路组成。 下面简要说明各部分电路的作用与要求: 1、键盘输入电路: 主要把实验过程中的一些功能通过键盘设置到系统中。 2、显示电路:  显示主叫与被叫电路的电话号码,同时显示通话时间。 3、输入输出扩展电路: 显示电路与键盘输入电路主要通过该电路进行工作。主要芯片是D8155A,SN74LS240,MC1413。 4、双音多频DTMF接收检测电路: 把MT8870DC输出的DTMF四位二进制信号,接收存贮后再送给CPU中央集中控制处理系统。 5、用户状态检测电路: 主要识别主、被叫用户的摘挂机状态,送给CPU进行处理。 6、自动交换网络驱动电路: 主要实现电话交换通信时,CPU发出命令信息,由此电路实现驱动自动交换网络系统,其核心集成电路为SN74LS374,D8255A,GD74LS373等芯片。 7、信号音控制电路: 它完全按照CPU发出的指令进行操作,使各种信号音按照系统程序进行工作。 8、振铃控制电路: 它也是按照CPU发出的指令进行工作,具体如下: (A)不振铃时,要求振铃支路与供电系统分开。 (B)振铃时,铃流送向话机,并且供电系统通过振铃支路向用户馈电,用户状态检测电路同时能检测用户的忙闲工作状态。 (C)当振铃时,用户一摘机就要求迅速断开振铃支路。 (D)振铃时要求有1秒钟振、4秒钟停的通断比。 以上是CPU中央集中控制处理系统的主要工作过程,要全面具体实现上述工作过程,则要有软件支持,该软件程序流程图见图1—4。 图1-3 键盘功能框图 对图1-3所示的键盘功能作如下介绍: “时间”: 该键可设置系统的延时时间。如久不拔号、久不应答、位间不拔号的延时,缺省值为10秒,可选择的时间值有10秒、30秒、1分钟。按一次该键则显示下一个时间值,三个值循环显示,当按下“确认”键时,就选定当前显示值供系统使用,按“复位”键则清除该次时间的设定。 “会议电话”: 该键为召开电话会议的按键。电话会议设置用户1为主叫方,其他三路为被叫方,只能由主叫方主持召开会议,向其他三路发出呼叫。电路完全接通或者接通两路后,主叫方能和任一被叫方互相通话。除“复位”键外,其他键均推失去功能。会议结束后,可按“复位”键重启系统。 “中继”: 该键为局内交换切向中继交换的功能按键,按下此键,再按“确认”键进行确认,则工作模式由局内交换切换为中继交换,显示器循环显示“d”,此时方可通过中继拨打“长途”电话。按“复位”键重启系统,进入正常局内交换模式。 “确认”: 该键完成对其他功能键的确认,防止误按键,在键盘中除“复位”键外,其他功能键都必须加“确认”键才能完成所定义的功能。 “复位”: 该键为重启系统按键。在任何时候或者系统出现不正常状态时都可按下此键重启系统(有用户通话时,会中断通话),所有设置均为默认值。 图1-5是显示电路工作示意说明图。 主叫号码显示 计时显示 被叫号码显示 图1-5 显示电路 开 始 NO 有用户呼叫吗? 呼叫••••••••••••••••••••••••••••••••••••••••••• YES 去 话 接 续 向主叫送拨号音 NO 第一位号码来了吗? 拨号开始•••••••••••••••••••••••••••••••• YES 停送拨号音,收存号码 内 部 处 理 拨号完毕•••••••••••••••••••••••••••••••• 被叫闲吗? NO YES 来 话 接 续 向主叫送忙音 向被叫送铃流,向主叫送回铃音 被叫应答否? NO 主叫挂机否? 应答•••••••••••••••••••••••••••••••••••• YES 停送铃流,回铃音,接通电路 YES 话终挂机否? 挂机•••••••••••••••••••••••••••••••••••••• YES 拆线(释放复原) 结 束 图1-4 程序工作流程示意图 五、实验内容 1、测量实验系统电路板中的TP91~TP95各测量点电压值,并记录。 2、从总体上初步熟悉两部电话单机用空分交换方式进行通话。 3、初步建立程控交换原理系统及电话通信的概念。 4、观察并记录一个正常呼叫的全过程。 5、观察并记录一个不正常呼叫的状态。 图1-6 呼叫识别电路框图 五、 实验步骤 1、接上交流电源线。 2、将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3、先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8,J9。此时实验箱上的五组电源已供电,各自发光二极管亮。 4、按 “复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,数码管循环显示“P” ,即可进行实验。 5、将三用表拔至直流电压档,然后测量TP91,TP92,TP93,TP94,TP95的电压是否正常:TP91为-12V,TP92为-48V,TP93为+5V,TP94为+12V,TP95为-5V。(-48V允许误差±10%,其它为±5%) 6、将四个用户接上电话单机。 7、正常呼叫全过程的观察与记录。(现以用户1为主叫,用户4为被叫进行实验) A、 主叫摘机,听到拨号音,数码管显示主叫电话号码“68” 。 B、 主叫拨首位被叫号码“8”,主叫拨号音停,主叫继续拨完被叫号码“9”。 C、 被叫振铃,主叫听到回铃音。 D、 被叫摘机,被叫振铃停,主叫回铃音停,双方通话。数码管显示主叫号码和被叫号码,并开始通话计时。 E、 挂机,任意一方先挂机(如主叫先挂机),另一方(被叫)听到忙音,计时暂停,双方都挂机后,数码管循环显示“P” 。 8、不正常呼叫的自动处理 A、 主叫摘机后在规定的系统时间内不拨号,主叫听到忙音。(系统时间可以设置,在系统复位后按“时间”可循环显示“10”,“30”,“100”,分别表示10秒,30秒,1分钟,选定一个时间,按“确定”即系统时间被设置,在复位状态时,系统时间默认为10秒。) B、 拨完第一位号码后在规定的系统时间内没有拨第二位号码时,主叫听到忙音。 C、 号码拨错时(如主叫拨“56” ),主叫听到忙音。 D、 被叫振铃后在规定的系统时间内不摘机,被叫振铃音停,主叫听到忙音。 六、 实验注意事项 对实验系统加电一定要严格遵循先打开系统工作电源的“交流开关”,然后再打开直流输出开关J8,J9。实验结束后,先分别关直流输出开关J8,J9。最后再关“交流开关”,以避免实验电路的器件损坏。 七、 实验报告要求 1、画出实验系统电路的方框图,并作简要叙述。 2、对正常呼叫全过程进行记录。 实验二 用户线接口电路及二\四线变换实验 一、实验目的 1、全面了解用户线接口电路功能(BORST)的作用及其实现方法。 2、通过对MH88612C电路的学习与实验,进一步加深对BORST功能的理解。 3、了解二\四线变换电路的工作原理。 二、预习要求 认真预习程控交换原理中有关用户线接口电路等章节。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二台 3、20MHz示波器 一台 4、三用表 一台 四、电路工作过程 在现代电话通信设备与程控交换机中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些用户功能放到“用户电路”来完成。 用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。任何交换机都具有用户线接口电路。 模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器(或混合线圈)、继电器等分立元件构成,随着微电子技术的发展,近十年来在国际上陆续开发多种模拟SLIC,它们或是采用半导体集成工艺或是采用薄膜、厚膜混合工艺,并已实用化。在实际中,基于实现和应用上的考虑,通常将BORSCHT功能中过压保护由外接元器件完成,编解码器部分另单成一体,集成为编解码器(CODEC),其余功能由所谓集成模拟SLIC完成。 在布控交换机中,向用户馈电,向用户振铃等功能都是在绳路中实现的,馈电电压一般是-60V,用户的馈电电流一般是20mA~30 mA,铃流是25HZ, 90V左右,而在程控交换机中,由于交换网络处理的是数字信息,无法向用户馈电、振铃等,所以向用户馈电、振铃等任务就由用户线接口电路来承担完成,再加上其它一些要求,程控交换机中的用户线接口电路一般要具有B(馈电)、O(过压保护)、R(振铃)、S(监视)、C(编译码)、H(混合)、T(测试)七项功能。 模拟用户线接口电路的功能可以归纳为BORSCHT七种功能,具体含义是: (1)馈电(B-Battery feeling)向用户话机送直流电流。通常要求馈电电压为—48伏,环路电流不小于18mA。 (2)过压保护(O-Overvoltage protection)防止过压过流冲击和损坏电路、设备。 (3)振铃控制(R-Ringing Control)向用户话机馈送铃流,通常为25HZ/90Vrms正弦波。 (4)监视(S-Supervision)监视用户线的状态,检测话机摘机、挂机与拨号脉冲等信号以送往控制网络和交换网络。 (5)编解码与滤波(C-CODEC/Filter)在数字交换中,它完成模拟话音与数字码间的转换。通常采用PCM编码器(Coder)与解码器(Decoder)来完成,统称为CODEC。相应的防混叠与平滑低通滤波器占有话路(300HZ~3400HZ)带宽,编码速率为64kb/s。 (6)混合(H-Hyhird)完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送,接收数字四线单向信号之间的连接。过去这种功能由混合线圈实现,现在改为集成电路,因此称为“混合电路”。 (7)测试(T-Test)对用户电路进行测试。 模拟用户线接口功能见图2—1。 铃流发生器 馈电电源 发送码流 过 振 低通 编 a 压 测 铃 馈 混 码 模 拟 保 试 继 电 合 平衡 器 用 (编码信号) 户 护 开 电 电 电 网络 解 线 b 电 关 器 路 路 码 路 低通 器 接收码流 测试 振铃控台 用户线 总线 制信号弹 状态信号 图2-1 模拟用户线接口功能框 (一)用户线接口电路 在本实验系统中,用户线接口电路选用的是MITEL公司的MH88612C。MH88612C是2/4线厚膜混合用户线接口电路。它包含向用户话机恒流馈电、向被叫用户话机馈送铃流、用户摘机后自行截除铃流,摘挂机的检测及音频或脉冲信号的识别,用户线是否有话机的识别,语音信号的2/4线混合转换,外接振铃继电器驱动输出。MH88612C用户电路的双向传输衰耗均为-1dB,供电电源+5V和-5V。其各项性能指标符合邮电部制定的有关标准。 (1)该电路的基本特性 1、向用户馈送铃流 2、向用户恒流馈电 3、过压过流保护 4、被叫用户摘机自截铃 5、摘挂机检测和LED显示 6、音频或脉冲拨号检测 7、振铃继电器驱动输出 8、语音信号的2/4线转换 9、能识别是否有话机 10、无需偶合变压器 11、体积小及低功耗 12、极少量外围器件 13、厚膜混合型工艺 14、封装形式为20引线单列直插 图2-2是它的管脚排列图 (2)MH88612C引出端功能的说明 0脚:IC Internal Connection:空端。 1脚:TF Tip Feed: 连接外接二极管作为保护电路连到-48V和地。。 2脚:IC Internal Connection:空端。 3脚:VR Voice Receive(input): 四线语音信号的接收端。 4脚:VRef Voltage Reference:设置向用户电话线送恒流馈电的参考电压,恒流通过VRef调节;也可接地,一般为21mA环流。 5脚:VEE 负供电电源,通常为-5V DC。 6脚:GNDA 供电电源和馈电电源的地端,模拟接地。 7脚:GS Gain setting(input):低电平时直接接收附加增益为-0.5 dB, 此增益除编解码增益设置之外的,高电平时为0dB。 8脚:VX Voice Transmit(output):四线语音信号的发送端。 9脚:TIP 连接用户电话的“TIP”线。 10脚:RING 连接用户电话的“RING”线。 11脚:RF Ring Feed:外部连接至振铃继电器。 12脚:VDD 正供电电源,通常为+5V DC。 13脚:RC Relay Control(input)振铃继电器控制输入端,高电平有效 14脚:RD 振铃继电器驱动输出端,外接振铃继电器线圈至地端,内部有一线圈感应箝位二极管。 15脚:RV Ring Feed Voltage:用户线铃流源输入端,外部连接至振铃继电器。 16脚:VRLY 振铃继电器正供电电源,能常为+5V DC。 17脚:IC Internal Connection:空端。 18脚:VBat 用户线馈电电压,通常为-48V DC 19脚:CAP 连接外部电容作为振铃滤波控制连电阻到地。 20脚:SHK 摘挂机状态检测及脉冲号码输出端,摘机时输出高电平。 (3)用户线接口电路主要功能 图2-3是MH88612C内部电路方框图,其主要功能说明如下: TF VR TIP RING VX RF RV VRLY RC VRef RD CAP SHK 图2-3 MH88612C内部电路方框图 1、向用户话机供电,MH88612C可对用户话机提供恒流馈电,馈电电流由VBAT以及VDD供给。恒定的电流为25 mA。当环路电阻为2KΩ时,馈电电流为18 mA,具体如下: A、 供电电源VBat采用-48V; B、 在静态情况下(不振铃、不呼叫),-48V电源通过继电器静合接点至话机; C、 在振铃时,-48V电源通过振铃支路经继电器动合接点至话机; D、 用户挂机时,话机叉簧下压馈电回路断开,回路无电流流过; E、 用户摘机后,话机叉簧上升,接通馈电回路(在振铃时接通振铃支路)回路。 2、MH88612C内部具有过压保护的功能,可以抵抗保护TIP- -RING端口间的瞬时高压,如结合外部的热敏与压敏电阻保护电路,则可保护250V左右高压。 3、振铃电路可由外部的振铃继电器和用户电路内部的继电器驱动电路以及铃流电源向用户馈送铃流:当继电器控制端(RC端)输入高电平,继电器驱动输出端(RD端)输出高电平,继电器接通,此时铃流源通过与振铃继电器连接的15端(RV端)经TIP––RING端口向被叫用户馈送铃流。当控制端(RC端)输入低电平或被叫用户摘机都可截除铃流。用户电路内部提供一振铃继电器感应电压抑制箝位二极管。 4、监视用户线的状态变化即检测摘挂机信号,具体如下: A、用户挂机时,用户状态检测输出端输出低电平,以向CPU中央集中控制系统表示用户“闲”; B、用户摘机时,用户状态检测输出端输出高电平,以向CPU中央集中控制系统表示“忙”; 5、在TIP––RING端口间传输的语音信号为对地平衡的双向语音信号,在四线VR端与VX端传输的信号为收发分开的不平衡语音信号。MH88612C可以进行TIP––RING端口与四线VR端和VX端间语音信号的双向传输和2/4线混合转换。 6、MH88612C可以提供用户线短路保护:TIP线与RING线间,TIP线与地间,RING线与地间的长时间的短路对器件都不会损坏。 7、MH88612C提供的双向语音信号的传输衰耗均为-dB。该传输衰耗可以通过MH88612C用户电路的内部调整,也可通过外部电路调整; 8、MH88612C的四线端口可供语音信号编译码器或交换矩阵使用。 由图1-1可知,本实验系统共有四个用户线接口电路,电路的组成与工作过程均一样,因此只对其中的一路进行分析。 图2-4是用户1用户线接口电路的原理图: 图2-4 用户线接口电路电原理图 为了简单和经济起见,反映用户状态的信号一般都是直流信号,当用户摘机时,用户环路闭合,有用户线上有直流电流流过。主叫摘机表示呼叫信号,被叫摘机,则表示应答信号,当用户挂机时,用户环路断开,用户线上的直流电流也断开,因此交换机可以通过检测用户线上直流电流的有无来区分用户状态。 当用户摘机时,发光二极管D10亮表示用户已处于摘机状态,TP13由低电平变成高电平,此状态送到CPU进行检测该路是否摘机,当检测到该路有摘机时,CPU命令拨号音及控制电路送出f=450HZ,U=3V的波形。 此时,在TP12上能检测到如图2—5所示波形 TP12 0 2VP-P t f = 400~450Hz 图2-5 450Hz拨号音波形 当用户听到450HZ拨号音信号时,用户开始拨电话号码,双音多频号码检测电路检测到号码时通知CPU进行处理,CPU命令450HZ拨号音发生器停止送拨号音,用户继续拨完号码,CPU检测主叫所要被叫用户的号码后,立即向被叫用户送振铃信号,提醒被叫用户接听电话,同时向主叫用户送回铃音信号,以表示线路能够接通,当被叫用户摘机时,CPU接通双方线路,通信过程建立。一旦接通链路,CPU即开始计时,当任一方先挂机,CPU检测到后,立即向另一方送忙音,以示催促挂机,至此,主、被叫用户一次通信过程结束。 通过上述简单分析,不难得出各测量点的波形。 TP11:通信时有发送话音波形;拨号时有瞬间DTMF波形;不通信时则此点无波形。 TP12:通信时有接收话音波形:摘机后拨号前有450HZ拨号音信号;不通信时则此点无波形。 TP13:摘挂机状态检测测量点 挂机:TP13=低电平。 摘机:TP13=高电平。 TP14:振铃控制信号输入,高电平有效。即工作时为高电平,常态为低电平。 由于4个用户线接口电路的测量点相同,故对其它三个用户线接口电路的测量点就不一一叙述,波形均相同,即: TP11=TP21=TP31=TP41 TP12=TP22=TP32=TP42 TP13=TP23=TP33=TP43 TP14=TP24=TP34=TP44 (二)二\四线变换电路 在该实验系统中,二\四线变换由用户线接口电路中的语音单元电路实现,图2-6为电路的功能框图,该电路完成二线–––单端之间信号转换,在MH88612C内部电路中已经完成了该变换。 T TR R 图2-6 二/四线变换功能框图 二\四线变换的作用就是把用户线接口电路中的语音模拟信号(TR)通过该电路的转换分成去话(T)与来话(R),对该电话的要求是: 1、将二线电路转换成四线电路; 2、信号由四线收端到四线发端要有尽可能大的衰减,衰减越大越好; 3、信号由二线端到四线发端和由四线收端到二线端的衰减应尽可能小,越小越好; 4、应保持各传输端的阻抗匹配; 以便于PCM编译码电路形成发送与接收的数字信号。 五、实验内容 1、参考有关程控交换原理教材中的用户线接口电路等单节,对照该实验系统中的电路,了解其电路的组成与工作过程。 2、通过主叫、被叫的摘、挂机操作,了解B、R、S等功能的具体作用。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8,J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 用户1,用户3接上电话单机。 6. 用户电话单机的直流供电(B)的观测。(现以用户1为例) 1) 用户1的电话处于挂机状态,用三用表的直流档测量TP1A,TP1B对地的电压,TP1A为-48V,TP1B为0V,它们之间电压差为48V。 2) 用户1的电话处于摘机状态,用三用表的直流档测量TP1A,TP1B对地的电压,TP1A为-10V左右(此时的电压与电话的内阻抗有关,所以每部电话的测量值不一定相同),TP1B为-3.7V左右。 以上给出的电压值只是作为参考。 7. 观察二/四线变换的作用。 1) 用正常的呼叫方式,使用户1、用户3处于通话状态。 2) 当用户1对着电话讲话时(或按电话上的任意键),用示波器观察TP11上的波形,为语音信号(或双音多频信号),不讲话时无信号。 3) 当用户1听到用户3讲话时(或用户3按电话上任意键),用示波器观察TP12上的波形,为语音信号(或双音多频信号),对方不讲话时无信号。 4) 用示波器观察TP1A。不管是用户1讲话还是用户3讲话(或按电话上的任意键)此测试点都有语音波形(或双音多频信号)。 8. 摘、挂机状态检测的观测。 1) 当用户1的电话摘机时,用示波器测量TP13为高电平(4V左右)。 2) 当用户1的电话挂机时,用示波器测量TP13为低电平(0V左右)。 9. 被叫话机振铃(R)的观测。 1) 用户1处于挂机状态,用户3呼叫用户1,即用户3拨打“68”,使用户1振铃。 2)当用户1的电话振铃时,用示波器观察TP14,振铃时TP14为高电平(3V左右);不振铃时TP14为低电平(0V左右)。 七、实验注意事项 当实验过程中出现不正常现象时,请按一下“复位”键,以使系统重新启动。 八、实验报告要求 1、画出本次实验电路方框图,并能说出其工作过程。 2、画出各测量点在各种情况下的波形图。 实验三 程控交换PCM编译码器实验 一、实验目的 1、掌握PCM编译码器在程控交换机中的作用。 2、熟悉单片PCM编译码集成电路TP3067的使用方法。 二、预习要求 1、查阅有关TP3067的使用说明及其应用电路。 2、认真预习程控交换原理中有关这方面的内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二台 3、20MHz示波器 一台 4、音频信号源 一台 四、实验电路工作过程 1、PCM编译码器的简单介绍 模拟信号经过编译码器时,在编码电路中,它要经过取样、量化、编码,如图3—1(a)所示。到底在什么时候被取样,在什么时序输出PCM码则由A→D控制来决定。同样PCM码被接收到译码电路后经过译码低通、放大。最后输出模拟信号到话机,把这两部分集成在一个芯片上就是一个单路编译码器,它只能为一个用户服务,即在同一时刻只能为一个用户进行A\D及D\A变换。 编码器把模拟信号变换成数字信号的规律一般有二种,一种是μ律十五折线变换法,它一般用在PCM24路系统中,另一种是A律十三折线非线性变换法,它一般应用于PCM30\32路系统中,这是一种比较常用的变换法,模拟信号经取样后就进行A律十三折变换,最后变成8位PCM码头,在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去,这个时序号是由A→D控制电路来决定的,而在其它时隙时编码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧里只在一个由它自己的A→D控制电路决定的时隙里输出8位PCM码,同样在一个PCM帧里,它的译码电路也只能在一个由它自己的D—A控制电路决定的时序里,从外部接收8位PCM码。 其实电路编译码器的发送时序和接收时序还是可由外部电路来控制的,编译码器的发送时序由A→D控制电路来控制,而A→D控制电路还是受外部控制电路的控制,同样在译码电路中D→A控制电路也受外部控制电路的控制,这样,我们只要向A→D控制电路或D→A控制电路发某种命令即可控制单路编译码器的发送时序和接收时序号,从而也可以达到总线交换的目的,但各种单路编译码器对其发送时序和接收时序的控制方式都有所不同。象有些编译器就有二种方式,一种是编程法,即给它内部的控制电路输进一个控制字,令其在某某时隙干什么工作,另一种是直接控制,这时它有两个控制端,我们定义为FSX和FSr,要求FSX和FSr是周期性的,并且它的周期和PCM的周期要相同,都为125μS,这样,每来一个FSX,其中codec就输出一个PCM码,每来一个FSr,其codec就从外部输入一个PCM码。 图3-1(b)是PCM的译码电路方框图,它的工作过程同图3-1(a)的工作过程完全相反,因此这里就不再讨论了。 (a)A→D电路 (b)D→A电路 图3—1 A\D及D\A电路框图 2.在本实验系统的PCM编译码电路中,器件为美国国家半导体公司的TP3067。图3-2是它的管脚排列图。 图3-2 TP3067管脚排列图 其引脚符号说明 符号 功能 VP0+ 接收功率放大器的非倒相输出 GNDA 模拟地,所有信号均以该引脚为参考点 VP0- 接收功率放大器的倒相输出 VPI 接收功率放大器的倒相输入 VFRO 接收滤波器的模拟输出 VCC 正电源引脚,VCC=+5V±5% FSR 接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列。 DR 接收帧数据输入,PCM数据随着FSR前沿移入DR BCLKR\CLKSESL 在FSR的前沿后把数据移入DR的位时钟,其频率可从64KHz至2.48MHz。另一方面它也可能是一个逻辑输入,以此为在同步模式中的主时钟选择频率1.536MHz\1.544MHz或2.048MHz,BCLKR用在发送和接收两个方向(见表3-1) MCLKR\PDN 接收主时钟,其频率可以为1.536MHz、1.544MHz或2.148MHz,它允许与MCLKX异步,但为了获得最佳性能应当与MCLKX同步,当MCLKR连续联在低电位时,CLKX被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式。 MCLKX 发送主时钟,其频率可以是1.536MHZ,1.544MHZ或2.048MHz,它允许与MCLKR异步,同步工作能实现最佳性能。 BCLKX 把PCM数据从DX上移出的位时钟,其频率可 64kHz变至2.048MHz,但必须与MCLKX同步。 DX 由FSX启动的三态PCM数据输出 FSX 发送帧同步脉冲输入,它启动BCLKX并使DX上PCM数据移出DX上。 ANLB 模拟环回路控制输入,在正常工作时必须置为逻辑“0”当拉到逻辑“1”时,发送滤波器和发送前置放大器输出的连接线被断开,开而改为和接收功率放大器的VP0+输出连接。 GSX 发送输入放大器的模拟输出。用来在外部调节增益。 VFXI- 发送输入放大器的倒相输入。 VFXI+ 发送输入放大器的非倒相输入。 VBB 负电源引脚,VBB= -5V±5%。 3、PCM编译码电路的工作时钟 由上述电路分析可知,PCM编译码电路所需的工作时钟为2.048MHZ,FSR、FSX帧同步信号为8KHZ窄脉冲。它们的时序关系如图3-3 TP2048 0 TPTS0~ TPTS7 0 图3—3 PCM编译码工作钟各测量点波形图 图3-4 PCM编解码电原理图 五、实验内容 PCM编译码(C)的功能实验 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K74接2,3脚,K75接1,2脚;K60~K63接2,3脚;KTS7接2,3脚;K51、K52接2、3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8,J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 将一外加音频信号正弦波(VP-P为1.5伏,频率为1KHZ左右)接入至TPIN输入端(在实验箱上面中部)。 6. 用示波器逐点观察TPIN、TPDT、TPDTMF各测量点波形。 7. 慢慢增加外加音频信号的幅值,并用示波器观察TPDTMF的波形的变化。 说明:图3-5是PCM编译码输入输出波形图。有一点需注意,PCM编译码电路中,在没有外加信号输入时,PCM编码电路还是有输出的,此时该芯片对输入随机噪声进行编译码,一旦有信号输入,它会立即对输入信号进行编码。 TPIN 0 t TPTS6 t 125uS TPDT 0 t TPDTMF 0 t 图3-5 PCM编译码电路输入、输出波形图 七、实验注意事项 1、在进行PCM实验时,对TP3067芯片要特别小心谨慎操作,+5V、-5V电源必须同时加入,以保证该芯片有接地回路,否则,该芯片特别容易损坏。 2、观测各测量点波形时,示波器探头不能乱碰到其它测量点。 八、实验报告要求 1、画出各测量点的波形,注明在何种状态下测试到的波形。 2、当外加信号源的幅值到达一定值时,TPDTMF外的波形就会失真,这是为什么,分析其原因。 3、写出对实验电路的改进措施,有何体会? 实验四 多种信号音及铃流信号发生器实验 一、实验目的 1、了解电话通信中常用的几种信号和铃流信号的电路组成与产生方法。 2、熟悉这些音信号在传送过程中的技术要求和实现方法。 二、预习要求 预习有关拨号音,忙音,回铃音,铃流等有关内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话机 二台 3、20MHz示波器 一台 四、电路工作过程 我们知道,在用户话机与电信局的交换机之间的线路上,要沿两个方向传递语言信息。但是,为了接通一个电话,除了上述情况外,还必须沿两个方向传送所需的控制信号。比如,当用户想要通话时,必须首先向程控机提供一个信号,能让交换机识别并使之准备好有关设备,此外,还要把指明呼叫的目的地的信号(被叫)发往交换机。当用户想要结束通话时,也必须向电信局交换机提供一个信号,以释放通话期间所使用的设备。除了用户要向交换机传送信号之外,还需要传送相反方向的信号,如交换机要向用户传送关于交换机设备状况,以及被叫用户状态的信号。 由此可见,一个完整的电话通信系统,除了交换系统和传输系统外,还应有信号系统。 下面是本实验系统的传送信号流程,见图4-1所示。 用户向电信局交换机发送的信号有用户状态信号和号码信号。交换机向用户发送的信号有各种可闻信号与振铃信号(铃流)两种方式。 a、各种可闻信号:一般采用频率为450Hz的交流信号,例如: 拨号音:(Dial tone)连续发送的信号。 回铃音:(Ringing tone)1秒送,4秒断的5秒断续信号,与振铃一致。 忙音:(busy tone)0.35秒送,0.35秒断的0.7秒断续信号。 b、振铃信号(铃流):一般采用频率为25Hz,幅度为75V±15V的交流电压,以1秒送,4秒断的5秒断续方式发送。 在呼叫建立过程中,交换机应向主叫用户发送各种信号音,以使用户能了解连续进展情况和下一步应采取的操作。 用户线 用户线 主叫用户 被叫用户 摘机 拨号音信号 回铃音信号 振铃信号 话音信号 通信建立 忙音信号 挂机(先挂方) 挂机信号 挂机 (用户线信号) 图4-1 本实验系统传送信号流程图 (一)拨号音及产生电路 主叫用户摘机,CPU检测到该用户有摘机状态后,立即送出的音信号,表示可以拨号,当CPU中央处理单元收到第一个拨号脉冲后,应立即给予切断该信号,拨号音用连续的信号音。在本实验系统中,频率为400Hz~450Hz之间,幅度在1.5V~3.5 V之间,图4-2(a)是该电路的框图,图4-2(b)是该原理图。 (a) 450HZ方框图 (b) 450HZ电原理图 图4-2 450Hz拨号音电路图 (二)回铃音及控制电路 回音信号由CPU中央处理单元控制送出,通知主叫用户正在对被叫用户振铃,回铃音信号所用频率也同拨号音频率,继续周期为1秒通,4秒断,与振铃一致。 各国所用的断续周期不同,如日本为1秒断2秒续,重复周期为3秒。美国和加拿大为2秒续,4秒断,重复周期为6秒。我国采用4秒断,1秒续的5秒周期信号。因此在本实验系统中采用大约4秒断,1秒续的重复周期为5秒信号,见图4-3所示。 (a) 方框图 (b) 电原理图 图4-3 回铃音控制产生电路框图及原理图 (三)忙音及控制电路 忙音表示用户处于忙状态,此时用户应挂机等一会再重新呼叫。 在本实验系统中采用大约0.35秒断,0.35秒续的400Hz~450Hz的信号,见图4-4所示。 (a) 方框图 (b) 电原理图 图4-4 忙音控制产生电路框图及电原理图 (四)铃流信号发生器电路 铃流信号的作用是交换机向被叫用户发出,作为呼入信号,一般采用低频电流,如频率有16.6Hz、25Hz、33.3Hz等几种。 它的断续周期同回铃音信号相同,因此,在本实验系统中采用大约4秒断、1秒通的断续信号。图4-5是它的原理方框图,电原理图4-6所示。 图4-5 25HZ铃流发生器框图 图4-6 25Hz铃流发生器电原理图 上述四种信号在本实验系统中均有具体电路实现,然而在程控交换机中,信号音还不止上述几种,在此作一简单介绍,不作实验要求。 图4-7中各测量点的波形 (1)450Hz拨号音电路,其测量点为TP60; (2)回铃音控制电路,其测量点为TP61; (3)忙音控制电路,其测量点为TP62; (4)25Hz铃流号发生器电路,其测量点为TP63; (5)铃流信号输出的变压电路,其测量点为TP64; TP60 +1.5V O t -1.5V f=400~450Hz TP61 4.2V O t 1s 4s TP62 4.2V 0 t 0.35s 0.35s TP63 4.2V 0 t TP64 +50~60V 0 t -50~60V 图4-7 各测量点的波形图 (六)音信号的数字方式产生 众所周知,在数字程控交换机中直接进行交换的是PCM数字信息,在这样的情况下如何使用户接收到信号音(如拨号音,回铃音,忙音等)是一个重要的问题。因为模拟电路产生的信号音是不能通过PCM交换系统的,这就是要求设计一个数字型信号音发生器,使之能向交换网络输出这样一些PCM数字信息,这些数字信息经过非线性译码后能成为一个我们所需的模拟信号音。 1、传统方式产生数字音信号 电路见图4-8所示,可知,这是一种常见的PCM编码方式,400Hz~450Hz的正弦信号由硬件电路实现,再经过PCM编码器电路后,就可输出音信号的PCM数字码流了,经过数字交换网络后,再进行D/A变换还原成正弦信号送往用户电路即可。 图4—8 传统方式产生音信号电原理图 2、用数字电路产生音信号 图4-9是大约450Hz正弦波信号一个周期取样示意图,图4-10是数字电路产生音信号的原理框图。 0 t1 t2 t3 t4 A B C D 图4-9 450Hz正弦波信号取样示意图 图4—10 数字型信号音产生电路原理框图 由此可见,我们只要对正弦信号在理论上以每隔125μs取样一次,并将取样所得的正弦信号幅度按照A律十三折线非线性编码的规律进行计算,变成二进制编码,然后把这些二进制码存贮在EEPROM中,只要每隔125μs对它读出一次即可得到PCM数字信息码流。(注意:TP3067编码输出时,偶数位取反,例如+2.5V的电压编码输入应为 1111 1111,而TP3067输出为 1010 1010。) 五、实验内容 1、用三用表或示波器测量拨号音,忙音、回铃音及铃流信号的各测量点电压或波形,即测量点TP60、TP61、TP62、TP63、TP64。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8、J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 用示波器测量TP60、TP61、TP62、TP63、TP64各点波形。(观察TP61、TP62时示波器应设置为直流档) TP60 TP61 TP62 TP63 TP64 6. 用户1、用户3接上电话单机,用户1呼叫用户3,在呼叫过程中观察TP12的波形。(示波器设为直流档) 1) 用双踪示波器观察TP12的波形和TP60的波形,用户1摘机后听到拨号音时。即TP12与TP60的波形一样为450HZ的三角波信号。 2) 用户1拨完被叫电话号码“88” 后听到回铃音时,用双踪示波器观察TP12的波形和TP61的波形。即当TP61为高电平时(用户1听到回铃音),TP12有450HZ的三角波信号;当TP61为低电平时,TP12无波形。 3) 用户3振铃时,用双踪示波器观察TP3A的波形和TP64的波形。即当用户3振铃时,TP3A与TP64的波形一样;不振铃时,TP3A无波形。 4) 用户3摘机通话后,用户3先挂机,此时用户1听到忙音,用双踪示波器观察TP12的波形和TP62的波形。即当TP62为高电平时(用户1听到忙音),TP12有450HZ的三角波信号;当TP62为低电平时,TP12无波形。 七、实验注意事项 1、此项实验必须要由两人合作完成。 2、在测量25Hz的铃流信号发生器输出的波形时,一定要注意三用表的量程和示波器的电压量程档,以防止损坏仪器和其它电子器件。 八、实验报告要求 1、认真画出实验过程各测量点波形,并进行分析。 2、画出电路组成框图。 3、在实验过程中遇到的其它情况作出记录,并进行分析。 实验五 双音多频DTMF接收实验 一、实验目的 1、了解电话号码双音多频信号在程控交换系统中的发送和接收方法。 2、熟悉该电路的组成及工作过程。 二、预习要求 1、认真预习有关双音多频等相关内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 两台 3、20MHz示波器 一台 四、实验电路工作过程 (一)双音多频拨号简单介绍 在电话单机中,有两种拨号方式,即脉冲拨号和双音多频拨号。 双音多频拨号方式中的双音多频是指用两个特定的单音频信号的组合来代表数字或功能,两个单音频的频率不同,所代表的数字和功能也不同,在双音多频电话机中有16个按键,其中有10个数字键0~9,6个功能键*、#、A、B、C、D,按照组合的原理,它必须有8种不同的单音频信号,由于采用的频率有8种,故又称之为多频,又因以8种频率中任意抽出2种进行组合,又称其为8中取2的编码方式。 根据CCITT的建议,国际上采用697Hz、770Hz、852Hz、941Hz、1209Hz、1336Hz、1477Hz和1633Hz,把这8种频率分成两个群,即高频群和低频群,从高频群和低频群中任意各抽出一种频率进行组合,共有16种不同组合,代表16种不同数字或功能,见表5-1。 表5-1 1209 1336 1447 1633 697 1 2 3 A 770 4 5 6 B 852 7 8 9 C 941 * 0 # D 表中*、# 键作特殊功能用(如闭音、重发)等,A、B、C、D留作它用,例如拨数字号码“8”,则发双音多频信号频率为fH=1336Hz、fL=852Hz。 双音多频,简写DTMF(DTMF=Dual Tone Multirequency) fH (C1~C4) (R1~R4) fL 图5-1 一个典型的DTMF发送电路原理框图 DTMF发送器的原理与构成如图5-1所示,它主要包括: (1)晶体振荡器––––外接晶体(通常采用3.579545MHz)与片内电路构成振荡器,经分频产生参考信号。 (2)键控可变时钟产生电路–––––它是一种可控分频比的分频器,通常由n级移位寄存器与键控反馈逻辑单元组成。 (3)正弦波产生电路–––––它由正弦波编码器与D/A变换器构成,通常,可变速时钟信号先经5位移位寄存器,产生一组5位移位代码,再由可编程逻辑阵列(PLA)将其转换成二进制代码,加到D/A变换器形成台阶型正弦波。显然台阶的宽度等于时钟频率的倒数,这样形成的正弦波信号频率必然对应时钟的速率和按键的号码。 (4)混合电路–––––将键盘所对应产生的行、列正弦波信号(即低、高群fL、fH)相加、混合成双音信号输出。 (5)附加功能单元,如有时含有单音抑制,输出控制(禁止)、双键同按无输出等控制电路。 DTMF发送器按输入控制方式可分为键盘行列控制和BCD接口控制两种。它们的控制部分真值表分别示于表5-2、表5-3。 表5-2键盘控制接口功能真值表 输入 行 列 R1 R2 R3 R4 C1 C2 C3 C4 发送 fL(HZ) 697 770 852 941 频率 fH(HZ) 1209 1336 1477 1633 表5-3 BCD码控制接口功能真值表 BCD 码 输 入 发 送 频 率 R1 R2 R3 R4 fL(HZ) fH(HZ) 0 0 0 0 941 1336 0 0 0 1 697 1209 0 0 1 0 697 1336 0 0 1 1 697 1477 0 1 0 0 770 1209 0 1 0 1 770 1336 0 1 1 0 770 1477 0 1 1 1 852 1209 1 0 0 0 852 1336 1 0 0 1 852 1477 (二)双音多频接收电路 图5-2 典型DTMF接收器原理框图 DTMF接收器包括DTMF分组滤波器和DTMF译码器,其基本原理如图5-2所示。DTMF接收器先经高、低群带通滤器进行fL/fH区分,然后过零检测、比较,得到相应于DTMF的两路fL、fH信号输出。该两路信号经译码、锁存、缓冲,恢复成对应于16种DTMF信号音的4比特二进制码(D1~D4)。 图5-3 MT8870芯片及管脚排列图 在本实验系统电路中,DTMF接收器采用的是MT8870芯片。 图5-3是该芯片的管脚排列图。 1、该电路的基本特性 (1)提供DTMF信号分离滤波和译码功能,输出相应16种DTMF频率组合的4位并行二进制码。 (2)可外接3.579545MHz晶体,与内含振荡器产生基准频率信号。 (3)具有抑制拨号音和模拟信号输入增益可调的能力。 (4)二进制码为三态输出。 (5)提供基准电压(VDD\2)输出。 (6)电源 +5V (7)功耗 15mw (8)工艺 CMOS (9)封装 18引线双列直插 2、管脚简要说明 引出端符号说明 IN+,IN- 运放同、反相输入端,模拟信号或DTMF信号从此端输入。 FB 运放输出端,外接反馈电阻可调节输入放大器的增益。 VREF 基准电压输出。 IC 内部连接端,应接地。 OSC1,OSC0 振荡器输入、输出端,两端外接3.579545MHz晶体。 EN 数据输出允许端,若为高电平输入,即允许D01~D04输出, 若为低电平输入,则禁止D01~D04输出。 D01~D04 数据输出,它是相应于16种DTMF信号(高,低单音组合) 的4位二进制并行码,为三态缓冲输出。 CI\GT 控制输入,若此输入电压高于门限值VTSt,则电路将接收 DTMF单音对,并锁存相应码字于输出,若输入电压低于VTSt,则电路不接收新的单音对。 EC0 初始控制输出,若电路检测出一可识别的单音对,则此端即变为高电平,若无输入信号或连续失真,则EC0返回低电平。 CID 延迟控制输出,当一有效单音对被接收,CI超过VTSt,输出锁存器被更新,则CID为高电平,若CI低于VTSt,则CID返至低电平。 VDD 接正电源,通常接+5V。 VSS 接负电源,通常接地。 3、电路的基本工作原理 它完成典型DTMF接收器的主要功能:输入信号的高,低频组带通滤波、限幅、频率检测与确认、译码、锁存与缓冲输出及振荡,监测等,具体说来,就是DTMF信号从芯片的输入端输入,经过输入运放和拨号音抑制滤波器进行滤波后,分两路分别进入高,低频组滤波器以分离检测出高、低频组信号。 如果高,低频组信号同时被检测出来,便在EC0输出高电平作为有效检测DTMF信号的标志;如果DTMF信号消失,则EC0即返至低电平,与此同时,EC0通过外接R向C充电,得到CI,GT。(通常此两端相短接)积分波形,如图5-4所示,若经tGTP延时后,CI,GT。电压高于门限值VTst时,产生内部标志,这样,该电路在出现EC0标志时,将证实后的两单音送往译码器,变成4比特码字并送到输出锁存器,而CI标志出现时,则该码字送到三态输出端D01——D04,另外,CI信号经形成和延时,从CID端输出,提供一选通脉冲,表明该码字已被接收和输出已被更新,如若积分电压降到门限VTst以下,使CID也回到低电平。 图5-4是它的工作时序波形图 图5-4 MT8870的时序图 图5-7 DTMF信号测电路原理框图 其中,双音多频信号测试点为TPDTMF,数据输出允许端EN的测量点为TPSTD,它经反相器反向后得到。数据输出则可以通过发光二极管D103~D100显示出来,它代表的数是8421码。 五、实验内容 1、用示波器观察并测量发送DTMF信号的波形,在用户线接口电路的输入端进行测量,即在用户1用户线接口电路的测量点TP1A与TP1B进行测量。 2、用示波器观察并测量DTMF信号接收的波形TPDTMF,以及在MT8870电路输出端TPSTD。 其中,TPDTMF为双音多频信号的测量点 TPSTD为数据输出允许端EN的反相测量点,识别到双音多频信号时为低,否则就为高。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K71~K75接2,3脚;K61~K63接2,3脚,K70、K60接1、2脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8、J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 用户1、用户3接上电话单机。 6. 用户1摘机,开始拨打号码,即按电话单机上的任意键,用示波器的直流档对以下测量点进行观察并记录波形: 1) TPDTMF:当有键按下时有双音多频信号,无键按下时无信号。 2) TPSDT:当有键按下时该点是低电平,无键按下时该点为高电平。 3) TP11:当有键按下时有双音多频信号,无键按下时无信号。 7. 按不同的键时,其双音多频信号的波形不一样,要仔细观察。 8. 在按键过程中观察发光二极管D103~D100与所按键值的关系:(显示二极管是在该按键抬起的瞬间发生改变的) D103~D100对应的是8421码,如接下的键值为5时,对应的码字为0101,发光二极管D102,D100发光。在按键的过程中观察所按键值与发光二极管是否满足上述对应关系。 七、注意事项 1、使主机实验箱加电处于正常工作状态,并严格遵循操作规程。 2、在测量观察上述各测量点波形时,两位同学一定要配合好,即一位同学按照正常拨打电话的顺序进行操作,另一位同学要找到相应的测量点和有关电路单元,小心慎重操作,仔细体会实验过程中的各种实验现象。 3、在测量TP1A时,示波器接头的另一接地线接到TP1B上。 八、实验报告要求 1、画出DTMF接收电路的电原理图,并能简要分析工作过程。 2、画出在接收DTMF过程中各有关测量点在有、无信号状态的波形,并能作简要的分析与说明。 实验六 空分交换网络原理 系统实验 一、实验目的 1、掌握程控交换的基本原理与实现方法。 2、通过对MT8816芯片的实验,熟悉空分交换网络的工作过程。 二、预习要求 认真预习《程控交换原理》教材中的相关内容。 三、实验仪器仪表 1、主机实验箱 一台 2、电话单机 二~四台 3、20MHz示波器 一台 四、实验电路工作过程 (一)原理说明 其实,我们在实验一中已经对实验系统中的交换网络有了一些了解,下面我们则比较详细分析它的工作过程。它是由两大部分组成,即话路部分和控制部分,话路部分包括交换网络,用户电路出中继电路,入中继电路,收号器,音信号发生器以及信号设备等;控制部分则是一台电子计算机,它包括中央处理器,存储器和输入、输出设备。 在我们本实验系统中,交换网络的方框图见图6-1所示。 图6-1 实验系统的交换网络结构方框图 (二)电子接线器简介 早先的程控空分交换机的网络,采用的接线器是机械的,也就是说它由机械接点组成的。然后由这些机械接线器组成交换网络。这些机械接线器包括小型纵横接线器、螺簧接线器、剩簧接线器、笛簧接线器……五花八门,品种繁多。由于目前已不采用,所以不在这里介绍。当前的空分交换机采用的是电子接线器。这是从MOS型超大规模接线器。目前,生产电子接线器的电子化成为可能。电子接线器就是MOS型的空分接线器。目前,生产电子接线器的厂家很多,型号也各有不同,如Mitel公司的MT8804,MT8812,MT8816等,MOTOROLA公司的142100,145100等,SGS公司的M089,M099,M093等。这些电子接线器在我国生产和引进的空分用户交换机中均能见到。 下面将重点分析MT8816芯片的工作过程。 (1)MT8816基本特性 由图6-2可见,该芯片是8×16模拟开关阵列,它内含7–––128线地址译码器,控制锁存器和8×16交叉点开关阵列,其电路的基本特性为: 1、提供8×16模拟开关阵列功能 2、导通电阻(VDD=12V) 45Ω 3、导通电阻偏差(VDD=12V) 5Ω 4、模拟信号最大幅度 12VPP 5、开关带宽 45MHZ 6、非线性失真 0.01% 7、电源 4.5~13.2V 8、工艺 CMOS 9、封装 双列直插式 (a) MT8816管脚排列图 VCC VEE VSS COL0 COL7 (b) MT8816功能方框图 图6-2 MT8816功能方框图 (2)MT8816管脚说明 下面将对该管脚功能作一简要说明 COL0~COL7 列输入\输出,开关阵列8路列输入或输出。 ROW0~ROW15 行输入\输出,开关阵列16路行输入或输出。 ACOL0~ACOL2 列地址码输入,对开关阵列进行列寻址。 AROW0~AROW3 行地址码输入,对开关阵行进行行寻址。 ST 选通脉冲输入,高电平有效,使地址码与数据得以控制相应开关的通、断。在ST上升沿前,地址必须进入稳定态,在ST下降沿处,数据也应该是稳定的。 DI 数据输入,若DI为低电平,不管CS处于什么电平,均将全部开关置于截止状态。 RESET 复位信号输入,若为高电平,不管CS处于什么电平,均将全部开关置于截止状态。 CS 片选信号输入,高电平有效。 VDD 正电源,电压范围为4.5~13.2V。 VEE 负电源。 VSS 数字地。 (3)MT8816工作原理 下面我们将对MT8816型电子接线器作一介绍,使大家了解电子接线器的结构原理。其它型号的电子接线器也大同小异。 MT8816是CMOS大规模集成电路芯片。这是一片8×16模拟交换矩阵,如图6-3所示 COL7 COL6 COL5 COL4 COL3 COL2 COL1 COL0 图6-3 MT8816交换矩阵示意图 图中有8条COL线(L0—L7)和16条ROW线(J1~J15),形成一个模拟交换矩阵。它们可以通过任意一个交叉点接通。芯片有保持电路,因此可以保持任一叉接点处于接通状态,直至来复信号为止。CPU可以通过地址线ACOL2 ~ACOL0和数据线AROW3~AROW0进行控制和选择需要接通的交叉点号。ACOL2 ~ACOL0管COL7 ~COL0中的一条线。ACOL7 ~ACOL0编成二进制码,经过译码以后就可以接通交叉点相应的COLi;数据线AROW3~AROW0管ROW15~ROW0中的一条。AROW3~AROW0是不编码的,某一条AROW7线为“1”,控制相应ROWi的以接通有关的交叉点。例如要接通L1和J8之间的交叉点。这时一方面向ACOL0 ~ACOL2。送001,另一方面向AROW3送“1”。当送出地址启动门ST时,就可以将相应交叉点接通了,图中还有一个端子叫“CS”片选端。当CS为“1”时,全部交叉点就打开了。 电子接线器速度快,驱动要求低,并能自己保持。因此使用起来十分方便。 其它型号的芯片其基本原理也大致相同。区别只是容量不一样。 电子接线器的优点是体积小,价格便宜,它的缺点是导通电阻较机械接点大(一般几十欧姆到一百欧姆),并且串音衰耗也较机电的接线器小,因此电子接线器组成的交换网络和由机械接点组成的交换网络也有所区别。 五、实验内容 利用空分自动交换网络进行两部电话单机通话,对工作过程作记录。 六、实验步骤 1. 接上交流电源线。 2. 将K11~K14,K21~K24,K31~K34,K41~K44接2,3脚;K70~K75接2,3脚;K60~K63接2,3脚。 3. 先打开“交流开关”,指示发光二极管亮后,再分别按下直流输出开关J8、J9,此时实验箱上的五组电源已供电,各自发光二极管亮。 4. 按“复位”键进行一次上电复位,此时,CPU已对系统进行初始化处理,显示电路循环显示“P”,即可进行实验。 5. 将四个用户接上电话单机。 6. 首先用户1呼叫用户3,并进行通话,然后用户2呼叫用户4通话。 7. 用双踪示波器观察 1) 当用户1说话时 (或按电话上的任意键),TP11(用户1的去话)、TP32(用户3的来话)有语音波形(或双音多频信号),且波形一致,只是TP11的幅值比TP32的幅值大;不说话时无波形。 2) 当用户3说话时(或按电话上的任意键),TP31(用户3的去话)、TP12(用户1的来话)有语音波形(或双音多频信号),且波形一致,只是TP31的幅值比TP12的幅值大;不说话时无波形。 3) 当用户2说话时(或按电话上的任意键),TP21(用户2的去话)、TP42(用户4的来话)有语音波形(或双音多频信号),且波形一致,只是TP21的幅值比TP42的幅值大;不说话时无波形。 4) 当用户4说话时(或按电话上的任意键),TP41(用户4的去话)、TP22(用户2的来话)有语音波形(或双音多频信号),且波形一致,只是TP41的幅值比TP22的幅值大;不说话时无波形。 七、实验报告要求 1、画出本实验系统自动交换网络的电路框图,并分析工作过程。 实验七 程控交换原理编程调试实验 一、实验目的 1、了解CPU的工作原理及各种控制过程。 2、体会程控交换原理实验系统进行电话通信时的控制过程。 二、预习要求 1、熟练使用8051系列单片机仿真器。 2、预习《MCS-51单片机原理与应用》。 三、实验设备 1、主机实验箱 一台 2、电话单机 四台 3、PC机 一台 4、MCS-51系统单片机仿真器 一套 四、实验编程 本实验分为七个单元实验,每个实验单元完成对一个单元电路的控制或一种系统设置。图7-1为本实验总体框图。 图7-1 实验总体框图 在本次实验中,我们通过实际编程调试,实现程控交换机中CPU对话路设备的控制,进一步加深对程控交换网络工作原理的认识。在实验四中我们已经了解到实验系统中已由硬件产生了各种信号音,在电话拨打和接续过程中,CPU自动将各种信号音按照电话接续规则接入电话机,使我们能自如地拨打电话,各种信号音都是通过可由计算机控制的开关接入电话线路的,CPU根据电话接续规则,打开或关闭各种信号音的接入开关,使我们能从拨打电话的过程中听到各种信号音。 注意,系统定义:用户1系统定义为第1路; 用户2系统定义为第2路; 用户3系统定义为第3路; 用户4系统定义为第4路; 下面我们按图7-1将实验系统通过MCS-51单片机仿真器连接到计算机,打开单片机仿真调试软件,编辑、修改、编译源程序,下载执行CPU控制指令,

最新推荐

YD1821B数据手册

外部天线控制供电:Io4(max)=500mA,可关断,低压差+B-Vout4≤0.5V。 * 所有输出均有过流和短路保护。 * 内含 ACC、ILL、BARKE 和 REVERSE 检测回路。 * 内含过压(24.8V)和多级过温 (145/150/155℃)保护。 * 采用较...

程控交换实验、用户模块电路 主要完成BORSCHT七种功能,它由下列电路组成:

控制部分就是由CPU中央处理系统、输入电路(键盘)、输出电路(数码管)、双音多频DTMF检测电路、用户环路状态检测电路、自动交换网络驱动电路与交换网络转换电路、扩展电路、信号音控制电路等电路组成。 下面简要...

城轨列车,全球市场总体规模,前14大厂商排名及市场份额

城轨列车,全球市场总体规模,前14大厂商排名及市场份额

科云光盘摆渡系统故障排查手册.docx

科云光盘摆渡系统故障排查手册.docx

html5网页版中国象棋小游戏代码.zip

有兴趣刚需的可以自己下载,非常实用的特效代码,可以完美运行,有能力的还可以二次修改!

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督视觉表示学习中的时态知识一致性算法

无监督视觉表示学习中的时态知识一致性维信丰酒店1* 元江王2*†马丽华2叶远2张驰2北京邮电大学1旷视科技2网址:fengweixin@bupt.edu.cn,wangyuanjiang@megvii.com{malihua,yuanye,zhangchi} @ megvii.com摘要实例判别范式在无监督学习中已成为它通常采用教师-学生框架,教师提供嵌入式知识作为对学生的监督信号。学生学习有意义的表征,通过加强立场的空间一致性与教师的意见。然而,在不同的训练阶段,教师的输出可以在相同的实例中显著变化,引入意外的噪声,并导致由不一致的目标引起的灾难性的本文首先将实例时态一致性问题融入到现有的实例判别范式中 , 提 出 了 一 种 新 的 时 态 知 识 一 致 性 算 法 TKC(Temporal Knowledge Consis- tency)。具体来说,我们的TKC动态地集成的知识的时间教师和自适应地选择有用的信息,根据其重要性学习实例的时间一致性。

create or replace procedure这句语句后面是自定义么

### 回答1: 是的,"create or replace procedure"语句后面应该跟着自定义的存储过程名。例如: ```sql create or replace procedure my_procedure_name ``` 这里"my_procedure_name"是你自己定义的存储过程名,可以根据具体需求进行命名。 ### 回答2: 不完全是自定义。在Oracle数据库中,"CREATE OR REPLACE PROCEDURE"是一条SQL语句,用于创建或替换一个存储过程。关键词"CREATE"表示创建新的存储过程,关键词"OR REPLACE"表示如果该存储过程

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

基于对比检测的高效视觉预训练

10086⇥⇥⇥⇥基于对比检测的高效视觉预训练Ol i vierJ. He´naf f SkandaKoppula Jean-BaptisteAlayracAaronvandenOord OriolVin yals JoaoCarreiraDeepMind,英国摘要自我监督预训练已被证明可以为迁移学习提供然而,这些性能增益是以大的计算成本来实现的,其中最先进的方法需要比监督预训练多一个数量级的计算。我们通过引入一种新的自监督目标,对比检测,任务表示与识别对象级功能跨增强来解决这个计算瓶颈。该目标可提取每幅图像的丰富学习信号,从而在各种下游任务上实现最先进的传输精度,同时需要高达10少训练特别是,我们最强的ImageNet预训练模型的性能与SEER相当,SEER是迄今为止最大的自监督系统之一,它使用了1000多个预训练数据。最后,我们的目标无缝地处理更复杂图像的预训练,例如COCO中的图像,缩小了从COCO到PASCAL的监督迁移学习的差距1. 介绍自从Al