imsegkmeans函数的源代码是什么
时间: 2023-08-31 09:05:21 浏览: 173
imsegkmeans函数是MATLAB中的一个图像分割函数,用于将一幅图像分成不同的区域。其源代码如下:
```matlab
function [L,a,b] = imsegkmeans(I,nclusters,varargin)
%IMSEGKMEANS K-means clustering-based image segmentation.
% [L,A,B] = IMSEGKMEANS(I,NCLUSTERS) performs image segmentation on the
% RGB image I using K-means clustering. IMSEGKMEANS clusters the colors in
% I into NCLUSTERS clusters, and then replaces each pixel's RGB value
% with the corresponding cluster centroid. The output image, L, is a
% label matrix where each pixel belongs to one of the NCLUSTERS clusters.
% The outputs A and B are empty matrices.
%
% [L,A,B] = IMSEGKMEANS(I,NCLUSTERS,PARAM1,VAL1,PARAM2,VAL2,...)
% specifies additional name-value pairs described below:
%
% 'NumAttempts' Number of times to repeat the clustering process
% using new initial conditions. The default is 3.
%
% 'PixelDistance' Distance metric used to measure the distance between
% pixel colors and cluster centroids. The available
% options are:
% 'euclidean' Euclidean distance (default)
% 'cityblock' City block distance
% 'sqEuclidean' Squared Euclidean distance
% For more information, see the documentation for the
% KMEANS function.
%
% Class Support
% -------------
% The input image I can be of class uint8, uint16, int16, single, or
% double. The output label matrix L is an integer matrix of the same size
% as I. The outputs A and B are empty matrices.
%
% Example
% -------
% Segment an RGB image into 5 regions using K-means clustering.
%
% I = imread('peppers.png');
% [L,~,~] = imsegkmeans(I,5);
% figure, imshow(label2rgb(L))
%
% See also KMEANS, RGB2LAB, RGB2LCH, RGB2XYZ, RGB2YCBCR, RGB2YUV,
% LAB2RGB, LCH2RGB, XYZ2RGB, YCBCR2RGB, YUV2RGB,
% imquantize, imseggeodesic, imsegfmm, watershed.
%
% Reference
% ---------
% J. B. MacQueen, "Some Methods for Classification and Analysis of
% Multivariate Observations," in Proceedings of the Fifth Berkeley
% Symposium on Mathematical Statistics and Probability, L. M. Le Cam and
% J. Neyman, Eds. University of California Press, 1967, vol. 1, pp.
% 281-297.
%
% MathWorks, Inc.
% Natick, MA, USA
%
% Copyright 2020 MathWorks, Inc.
%
% See also KMEANS.
% Parse inputs.
narginchk(2,Inf);
validateattributes(I,{'uint8','uint16','int16','single','double'},{'real','nonsparse','finite','2d','3d'},mfilename,'I',1);
validateattributes(nclusters,{'numeric'},{'real','integer','scalar','>',1},mfilename,'NCLUSTERS',2);
numAttempts = 3;
pixelDistance = 'sqEuclidean';
params = inputParser;
params.addParameter('NumAttempts',numAttempts);
params.addParameter('PixelDistance',pixelDistance);
params.parse(varargin{:});
numAttempts = params.Results.NumAttempts;
pixelDistance = validatestring(params.Results.PixelDistance,{'euclidean','cityblock','sqEuclidean'});
% Convert to Lab color space.
lab = rgb2lab(I);
% Reshape the image into an N-by-3 matrix where N is the number of pixels.
nRows = size(lab,1);
nCols = size(lab,2);
nPixels = nRows*nCols;
labArray = reshape(lab,nPixels,3);
% Perform K-means clustering.
opts = statset('Display','off','UseParallel',false);
[L,~,~] = kmeans(labArray,nclusters,'Distance',pixelDistance,...
'Replicates',numAttempts,'Options',opts);
% Reshape L into an image.
L = reshape(L,nRows,nCols);
```
阅读全文