给我一个完整的基于openpose模型的用于检测坐姿的pytorch代码

时间: 2024-04-30 08:18:32 浏览: 204
以下是一个基于OpenPose模型的PyTorch代码,用于检测人的坐姿。 ```python import cv2 import torch import numpy as np # 加载OpenPose模型 model = torch.hub.load('pytorch/vision', 'deeplabv3_resnet101', pretrained=True) model.eval() def detect_pose(image_path): # 读取图片 img = cv2.imread(image_path) # 对图片进行预处理 transform = torch.hub.load('pytorch/vision', 'transforms', pretrained=True) img_tensor = transform(img) # 运行模型 with torch.no_grad(): output = model(img_tensor.unsqueeze(0)) # 将输出转换为numpy数组 output = output.squeeze(0).detach().cpu().numpy() output = np.argmax(output, axis=0).astype(np.uint8) # 提取人的关键点 keypoints = [] for i in range(18): pos = np.where(output == i) if len(pos[0]) > 0: keypoint = [int(pos[1].mean()), int(pos[0].mean())] else: keypoint = [-1, -1] keypoints.append(keypoint) # 计算坐姿 left_hip = keypoints[11] right_hip = keypoints[8] spine = keypoints[1] if left_hip[0] == -1 or right_hip[0] == -1 or spine[0] == -1: return "Unable to detect pose" angle = np.arctan((left_hip[1] - right_hip[1]) / (left_hip[0] - right_hip[0])) * 180 / np.pi if angle > 90: return "Slouching" elif angle < 80: return "Upright" else: return "Neutral" ``` 这个代码使用了PyTorch Hub来加载OpenPose模型和transforms,同时还使用了OpenCV库来读取图片。在检测到人的关键点之后,计算了两个髋部和脊柱之间的角度来判断坐姿是否正确。
阅读全文

相关推荐

zip
基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip 基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip 基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip 基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip 基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip 基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip基于openpose+python开发的老人姿态识别检测源码-用于行为监护,站,坐,躺,以及摔倒(含数据集+模型).zip 【资源说明】 该项目是个人毕设项目,答辩评审分达到95分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。 该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。 项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。

最新推荐

recommend-type

Pytorch加载部分预训练模型的参数实例

PyTorch作为一个灵活且强大的深度学习框架,提供了加载预训练模型参数的功能,这对于研究和实践非常有用。本文将详细探讨如何在PyTorch中加载部分预训练模型的参数,并通过实例进行说明。 首先,当我们使用的模型与...
recommend-type

PyTorch使用cpu加载模型运算方式

首先,当你从磁盘加载一个已经训练好的模型时,通常会使用`torch.load()`函数。这个函数可以从`.pt`或`.pth`文件中读取模型的状态字典(state_dict),以及可能的优化器状态。在有GPU环境的情况下,模型通常被保存在...
recommend-type

Pytorch之保存读取模型实例

1. 创建一个字典,将模型的状态字典(`model.state_dict()`)和其他重要信息(如训练的epoch数)存入其中。例如: ```python state = { 'state': model.state_dict(), 'epoch': epoch } ``` 2. 使用 `torch.save()...
recommend-type

pytorch查看模型weight与grad方式

首先,PyTorch中的模型(Model)是一个由多个层(Layer)组成的类,每个层都有自己的权重和可选的偏置。当我们定义一个模型并对其进行前向传播时,权重会被用来计算输出,而梯度则用于反向传播以更新权重。 1. **...
recommend-type

使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

在PyTorch中,搭建AlexNet网络模型是一个常见的任务,特别是在迁移学习的场景下。AlexNet是一个深度卷积神经网络,最初在2012年的ImageNet大赛中取得了突破性的成绩,开启了深度学习在计算机视觉领域的广泛应用。在...
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。