给我一个完整的基于openpose模型的用于检测坐姿的pytorch代码
时间: 2024-04-30 19:18:32 浏览: 220
以下是一个基于OpenPose模型的PyTorch代码,用于检测人的坐姿。
```python
import cv2
import torch
import numpy as np
# 加载OpenPose模型
model = torch.hub.load('pytorch/vision', 'deeplabv3_resnet101', pretrained=True)
model.eval()
def detect_pose(image_path):
# 读取图片
img = cv2.imread(image_path)
# 对图片进行预处理
transform = torch.hub.load('pytorch/vision', 'transforms', pretrained=True)
img_tensor = transform(img)
# 运行模型
with torch.no_grad():
output = model(img_tensor.unsqueeze(0))
# 将输出转换为numpy数组
output = output.squeeze(0).detach().cpu().numpy()
output = np.argmax(output, axis=0).astype(np.uint8)
# 提取人的关键点
keypoints = []
for i in range(18):
pos = np.where(output == i)
if len(pos[0]) > 0:
keypoint = [int(pos[1].mean()), int(pos[0].mean())]
else:
keypoint = [-1, -1]
keypoints.append(keypoint)
# 计算坐姿
left_hip = keypoints[11]
right_hip = keypoints[8]
spine = keypoints[1]
if left_hip[0] == -1 or right_hip[0] == -1 or spine[0] == -1:
return "Unable to detect pose"
angle = np.arctan((left_hip[1] - right_hip[1]) / (left_hip[0] - right_hip[0])) * 180 / np.pi
if angle > 90:
return "Slouching"
elif angle < 80:
return "Upright"
else:
return "Neutral"
```
这个代码使用了PyTorch Hub来加载OpenPose模型和transforms,同时还使用了OpenCV库来读取图片。在检测到人的关键点之后,计算了两个髋部和脊柱之间的角度来判断坐姿是否正确。
阅读全文