用matlab写一个实现人脸识别的代码
时间: 2024-05-13 19:14:50 浏览: 163
这里提供一个基于MATLAB的人脸识别的简单示例代码,使用了Eigenface方法:
```matlab
% 读取人脸图片
faceDatabase = imageSet('人脸图片路径');
% 生成训练集和测试集
[trainingSet, testSet] = partition(faceDatabase, [0.8 0.2]);
% 训练Eigenface模型
trainingFeatures = zeros(size(trainingSet,2)*trainingSet(1).Count, numel(trainingSet(1).ImageLocation));
featureCount = 1;
for i=1:size(trainingSet,2)
for j=1:trainingSet(i).Count
img = read(trainingSet(i),j);
trainingFeatures(:,featureCount) = img(:);
featureCount = featureCount + 1;
end
end
averageFace = mean(trainingFeatures, 2);
trainingFeatures = trainingFeatures - repmat(averageFace, 1, size(trainingFeatures,2));
[eigenvectors, eigenvalues] = eig(trainingFeatures'*trainingFeatures);
eigenfaces = trainingFeatures * eigenvectors;
eigenfaces = eigenfaces ./ repmat(sqrt(sum(eigenfaces.^2)), size(eigenfaces,1), 1);
% 测试Eigenface模型
trueLabels = zeros(1, numel(testSet));
predictedLabels = zeros(1, numel(testSet));
confidenceScores = zeros(1, numel(testSet));
testFeatures = zeros(size(trainingFeatures,1), numel(testSet));
featureCount = 1;
for i=1:size(testSet,2)
for j=1:testSet(i).Count
img = read(testSet(i),j);
testFeatures(:,featureCount) = img(:) - averageFace;
featureCount = featureCount + 1;
trueLabels(featureCount) = i;
end
end
for i=1:numel(testSet)
testCoeffs = eigenfaces' * testFeatures(:,i);
distances = zeros(1, size(trainingFeatures,2));
for j=1:size(trainingFeatures,2)
coeffDiff = testCoeffs - eigenfaces' * trainingFeatures(:,j);
distances(j) = norm(coeffDiff);
end
[minDistance, index] = min(distances);
predictedLabels(i) = index;
confidenceScores(i) = 1 - minDistance / norm(testCoeffs);
end
% 显示结果
figure;
for i=1:numel(testSet)
subplot(5,5,i);
imshow(read(testSet(i),1));
title(sprintf('预测: %s\n置信度: %f', trainingSet(predictedLabels(i)).Description, confidenceScores(i)));
end
```
注意:这只是一个简单的示例代码,实际使用中需要根据具体的数据和应用场景进行调整和优化。
阅读全文