M_seed = torch.bernoulli(torch.clamp( input_abs * gamma, min=0, max=1.0)).to(device=input.device, dtype=input.dtype)代码解释

时间: 2024-04-19 19:27:50 浏览: 14
这行代码包含了几个操作。首先,使用torch.clamp函数对input_abs乘以gamma的结果进行限制,使其在0和1之间。clamp函数的min和max参数分别指定了允许的最小值和最大值,超出这个范围的值会被截断到最小值或最大值。接下来,使用torch.bernoulli函数对上一步得到的张量进行伯努利采样,即以该张量中的每个元素作为概率进行独立的二元采样。采样结果是一个与输入张量形状相同的二值张量,其中的元素值为0或1。最后,使用.to方法将采样结果移动到与输入张量相同的设备(device)上,并使用.dtype方法将其设置为与输入张量相同的数据类型(dtype),然后将结果赋值给变量M_seed。
相关问题

class DropBlock_Ske(nn.Module): def __init__(self, num_point, block_size=7): super(DropBlock_Ske, self).__init__() self.keep_prob = 0.0 self.block_size = block_size self.num_point = num_point self.fc_1 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.fc_2 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.sigmoid = nn.Sigmoid() def forward(self, input, keep_prob, A): # n,c,t,v self.keep_prob = keep_prob if not self.training or self.keep_prob == 1: return input n, c, t, v = input.size() input_attention_mean = torch.mean(torch.mean(input, dim=2), dim=1).detach() # 32 25 input_attention_max = torch.max(input, dim=2)[0].detach() input_attention_max = torch.max(input_attention_max, dim=1)[0] # 32 25 avg_out = self.fc_1(input_attention_mean) max_out = self.fc_2(input_attention_max) out = avg_out + max_out input_attention_out = self.sigmoid(out).view(n, 1, 1, self.num_point) input_a = input * input_attention_out input_abs = torch.mean(torch.mean( torch.abs(input_a), dim=2), dim=1).detach() input_abs = input_abs / torch.sum(input_abs) * input_abs.numel() gamma = 0.024 M_seed = torch.bernoulli(torch.clamp( input_abs * gamma, min=0, max=1.0)).to(device=input.device, dtype=input.dtype) M = torch.matmul(M_seed, A) M[M > 0.001] = 1.0 M[M < 0.5] = 0.0 mask = (1 - M).view(n, 1, 1, self.num_point) return input * mask * mask.numel() / mask.sum()

这段代码定义了一个名为DropBlock_Ske的PyTorch模型类。该类继承自nn.Module基类,并实现了模型的前向传播逻辑。 在初始化方法中,定义了一些模型的属性,包括keep_prob、block_size、num_point等。然后,定义了两个全连接网络层fc_1和fc_2,并使用nn.Sequential组织网络层的结构。最后,使用nn.Sigmoid定义了一个Sigmoid激活函数。 在前向传播方法中,首先根据输入的keep_prob值判断是否需要执行DropBlock操作,如果不需要则直接返回输入。接着,获取输入张量的形状,并计算出输入张量的均值和最大值。通过两个全连接网络层对均值和最大值进行处理,将处理结果相加得到out。然后,使用Sigmoid激活函数对out进行处理,得到一个形状为(n, 1, 1, num_point)的张量input_attention_out。将input_attention_out与输入张量input相乘得到input_a。 接下来,计算input_a的绝对值的平均值,并将其除以总数并乘以元素个数,得到一个形状为(n,)的张量input_abs。定义了一个gamma值,并将input_abs与gamma相乘并经过torch.clamp函数进行限制,再经过torch.bernoulli函数进行伯努利采样,得到一个形状与输入相同的二值张量M_seed。使用torch.matmul函数将M_seed与A矩阵相乘得到M。 然后,将M中大于0.001的元素赋值为1.0,小于0.5的元素赋值为0.0。接着,将1减去M得到mask,将mask乘以输入张量input,并除以mask中的元素个数与总和,得到最终的输出张量。 这个模型类实现了DropBlock_Ske操作,其中包含了一些全连接网络层和一些基于概率的操作。它的具体功能和用途可能需要根据上下文来确定。

mask_pro_label = torch.mul(label, mask_labels) pos_lab= torch.mul(pre_label, mask_pro_label)#积极标签 neg_label=torch.abs(label-1) mask_neg_label = torch.mul(neg_label, mask_labels) neg_lab= torch.mul(pre_label, mask_neg_label)#消极标签 neg_l

abel= torch.mul(neg_label, mask_labels) neg_lab= torch.mul(pre_label, mask_neg_label)#消极标签 这段代码是用来生成积极和消极标签的。首先,通过 torch.mul(label, mask_labels) 将原始标签 label 和掩码 mask_labels 相乘,得到积极标签 mask_pro_label。然后,通过 torch.mul(pre_label, mask_pro_label) 将预测标签 pre_label 和积极标签 mask_pro_label 相乘,得到最终的积极标签 pos_lab。 接着,通过 torch.abs(label-1) 将原始标签 label 取反得到消极标签 neg_label。再通过 torch.mul(neg_label, mask_labels) 将消极标签 neg_label 和掩码 mask_labels 相乘,得到消极标签的掩码 mask_neg_label。最后,通过 torch.mul(pre_label, mask_neg_label) 将预测标签 pre_label 和消极标签的掩码 mask_neg_label 相乘,得到最终的消极标签 neg_lab。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

最新推荐

recommend-type

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl离线安装包linux系统x86_64

torch-1.7.1+cu110-cp37-cp37m-linux_x86_64.whl torchvision-0.8.2+cu110-cp37-cp37m-linux_x86_64.whl 由于超过1G无法上传,给的是百度云链接!!!!!需自行下载
recommend-type

JavaScript_构建您的第一个移动应用程序.zip

JavaScript
recommend-type

手机应用源码新浪微博Android客户端.rar

手机应用源码新浪微博Android客户端.rar
recommend-type

俄罗斯方块项目【尚学堂·百战程序员】.zip

# 俄罗斯方块项目【尚学堂·百战程序员】 俄罗斯方块是一款经典的益智游戏,最早由俄罗斯程序员阿列克谢·帕基特诺夫于1984年开发。本项目基于【尚学堂·百战程序员】的课程内容,详细介绍如何使用JavaScript、HTML5和CSS3从零开始开发一个完整的俄罗斯方块游戏。该项目旨在帮助学习者掌握前端开发的基础知识和技能,提升编程能力。 ## 项目概述 本项目实现了经典的俄罗斯方块游戏,主要包括以下功能模块: ### 1. 游戏界面 游戏界面采用HTML5的Canvas元素进行绘制,使用CSS3进行样式设计。界面包括游戏区域、得分显示、下一个方块预览和控制按钮。通过合理的布局和美观的设计,为玩家提供良好的游戏体验。 ### 2. 方块生成与控制 游戏随机生成不同形状的方块(I、O、T、L、J、S、Z),玩家可以通过键盘控制方块的移动和旋转。具体操作包括: - 左移:按左箭头键。 - 右移:按右箭头键。 - 下移:按下箭头键。 - 旋转:按上箭头键。 ### 3. 方块下落与碰撞检测 方块自动从上到下逐行下落,速度逐渐加快。通过碰撞检测算法,判断方块是否与其他方块或底部边界
recommend-type

如何打造一个新品牌tbb.pptx

如何打造一个新品牌tbb.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。