基于dtw的孤立字识别系统matlab代码
时间: 2023-11-27 12:51:11 浏览: 79
以下是基于DTW的孤立字识别系统的MATLAB代码示例:
```matlab
clear all; close all; clc;
% 载入训练集和测试集
load('isolated_train.mat');
load('isolated_test.mat');
% 提取特征
train_feature = cell(1, length(train_data));
for i = 1:length(train_data)
train_feature{i} = mfcc(train_data{i}, train_fs);
end
test_feature = cell(1, length(test_data));
for i = 1:length(test_data)
test_feature{i} = mfcc(test_data{i}, test_fs);
end
% 训练模型
model = struct();
for i = 1:length(train_label)
label = train_label(i);
if ~isfield(model, num2str(label))
model.(num2str(label)) = {};
end
model.(num2str(label)) = [model.(num2str(label)); train_feature{i}];
end
% 测试模型
correct = 0;
for i = 1:length(test_label)
test = test_feature{i};
true_label = test_label(i);
min_distance = Inf;
predict_label = -1;
for j = 1:length(fieldnames(model))
label = str2double(fieldnames(model){j});
template = model.(num2str(label));
for k = 1:size(template, 1)
distance = dtw(test', template(k, :)');
if distance < min_distance
min_distance = distance;
predict_label = label;
end
end
end
if predict_label == true_label
correct = correct + 1;
end
end
% 输出准确率
accuracy = correct / length(test_label);
fprintf('准确率:%.2f%%\n', accuracy * 100);
```
这里使用了MFCC(Mel-Frequency Cepstral Coefficients)作为特征,DTW(Dynamic Time Warping)作为距离度量。其中,`isolated_train.mat`和`isolated_test.mat`是训练集和测试集的数据文件,每个文件包含一个名为`train_data`或`test_data`的单元格数组,每个单元格存储一个音频信号,以及对应的采样率`train_fs`或`test_fs`和标签`train_label`或`test_label`。特征提取过程使用了第三方库MFCC包,需要先安装并添加到MATLAB路径中。
阅读全文