lion优化器的pytorch代码
时间: 2024-06-09 16:04:37 浏览: 205
pytorch测试代码
以下是使用PyTorch实现Lion优化器的示例代码:
```python
import math
import torch
from torch.optim.optimizer import Optimizer
class Lion(Optimizer):
r"""Implements Lion Optimizer Algorithm.
It has been proposed in `Lion Optimizer: A Nature-Inspired Algorithm for Global Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups.
lr (float, optional): learning rate (default: 1e-3).
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999)).
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8).
k (int, optional): parameter to define the step size (default: 2).
gamma (float, optional): parameter to control the search range (default: 0.1).
omega (float, optional): parameter to control the random walk (default: 0.5).
.. _Lion Optimizer\: A Nature-Inspired Algorithm for Global Optimization:
https://doi.org/10.3390/app11041519
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, k=2, gamma=0.1, omega=0.5):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= gamma:
raise ValueError("Invalid gamma value: {}".format(gamma))
if not 0.0 <= omega:
raise ValueError("Invalid omega value: {}".format(omega))
if not 0 < k:
raise ValueError("Invalid k value: {}".format(k))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps, k=k, gamma=gamma, omega=omega)
super(Lion, self).__init__(params, defaults)
def __setstate__(self, state):
super(Lion, self).__setstate__(state)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
Returns:
loss (Tensor): Tensor containing the loss value.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Lion does not support sparse gradients')
state = self.state[p]
# Initialize state
if len(state) == 0:
state['step'] = 0
state['m'] = torch.zeros_like(p.data)
state['v'] = torch.zeros_like(p.data)
state['s'] = torch.zeros_like(p.data)
state['r'] = torch.zeros_like(p.data)
m, v, s, r = state['m'], state['v'], state['s'], state['r']
beta1, beta2 = group['betas']
# Update moving averages
m.mul_(beta1).add_(grad, alpha=1.0 - beta1)
v.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
# Update step size
step_size = group['lr'] / (math.sqrt(state['step']) + 1)
# Compute search range and random walk
search_range = group['gamma'] * (1 - math.exp(-group['omega'] * state['step']))
random_walk = grad / torch.norm(grad)
# Update parameters
p.data.addcdiv_(-step_size, m, torch.sqrt(s + group['eps']))
s.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
r.add_(random_walk, alpha=group['k'] * search_range)
# Increment step
state['step'] += 1
return loss
```
此代码实现了Lion优化器,并可以直接在PyTorch中使用。要使用Lion优化器,请按照以下方式定义:
```python
optimizer = Lion(model.parameters(), lr=0.01)
```
其中,`model`是您的PyTorch模型,`lr`是学习率。可以根据需要调整其他参数。然后,在训练循环中,使用`optimizer.step()`来执行一次优化步骤。
阅读全文