命名实体识别python代码
时间: 2023-10-12 12:57:33 浏览: 206
以下是一个用于命名实体识别的Python代码示例:
```python
from transformers import AutoTokenizer
import torch
# 加载分词器
tokenizer = AutoTokenizer.from_pretrained('hfl/rbt6')
# 数据整理函数
def collate_fn(data):
tokens = \[i\[0\] for i in data\]
labels = \[i\[1\] for i in data\]
inputs = tokenizer.batch_encode_plus(tokens, truncation=True, padding=True, return_tensors='pt', is_split_into_words=True)
lens = inputs\['input_ids'\].shape\[1\]
for i in range(len(labels)):
labels\[i\] = \[7\] + labels\[i\]
labels\[i\] += \[7\] * lens
labels\[i\] = labels\[i\]\[:lens\]
return inputs, torch.LongTensor(labels)
```
这段代码使用了Hugging Face的transformers库,其中`AutoTokenizer`用于加载预训练的中文BERT模型的分词器。`collate_fn`函数用于整理数据,将输入的句子进行分词,并对标签进行处理,以适应命名实体识别任务的训练。
#### 引用[.reference_title]
- *1* *3* [命名实体识别代码阅读](https://blog.csdn.net/dfhg54/article/details/129110589)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [Python自然语言处理实战(4):词性标注与命名实体识别](https://blog.csdn.net/QFire/article/details/81057568)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文