用 Python 的 PyTorch 编写残差神经网络的代码示例,并加上注释
时间: 2023-05-24 09:01:39 浏览: 151
当然,我可以回答您有关编写残差神经网络的代码示例的问题,以下是一些 Python PyTorch 的残差网络代码:
```python
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
```
这是一个基本的残差块的结构,可以使用它来搭建整个残差神经网络。请注意,这个代码例子只是一个参考,您可以根据您自己的需要进行修改和适应。
阅读全文