GD32获取不到AD转换后的值

时间: 2024-05-30 11:16:03 浏览: 8
可能是以下原因导致: 1. ADC转换引脚未配置或配置错误。 2. ADC转换未使能或使能时序错误。 3. 转换结果未正确读取或读取时序错误。 4. 转换结果未正确处理或处理方法错误。 解决方法: 1. 检查ADC转换引脚配置是否正确,可以通过示波器或调试工具查看引脚电平变化情况。 2. 检查ADC转换使能时序是否正确,可以通过查看寄存器配置情况或示波器观察时序。 3. 确保转换结果正确读取,可以通过查看寄存器值或调试工具查看结果是否正确。 4. 确保正确处理转换结果,可以使用正确的处理方法,并检查代码是否正确实现。
相关问题

GD32F103的AD转换功能

GD32F103CBT6微控制器内置了一个ADC模块,可以实现模拟信号的采集和转换。该模块支持单通道和多通道的采集方式,同时支持软件触发和硬件触发两种转换触发方式。 以下是GD32F103CBT6的ADC模块的主要特性: 1. 12位分辨率:该模块可以将模拟信号转换为12位数字信号,具有较高的转换精度。 2. 多通道采集:支持最多16个模拟输入通道,可以进行多路模拟信号的采集。 3. 外部触发:支持外部触发信号,可以通过外部触发启动ADC转换。 4. DMA功能:支持DMA传输,可以实现高效的数据传输。 5. 内部温度传感器:该模块还集成了一个内部温度传感器,可以实现芯片温度的测量。 在使用ADC模块时,需要配置ADC的工作模式、采样时钟、采样周期、参考电压等参数。同时还需要配置ADC通道选择、采样时间等参数,以确保转换的准确性和稳定性。 总之,GD32F103CBT6的ADC模块具有较高的转换精度和多种采集方式,可以满足多种模拟信号采集和转换的需求。

GD32F103CBT6进行AD转换的基本流程

GD32F103CBT6进行AD转换的基本流程如下: 1. 确定转换通道:首先需要确定要进行AD转换的通道,即要转换的模拟信号来源。 2. 配置ADC模块:根据转换通道的不同,需要对ADC模块进行相应的配置,包括时钟控制、参考电压控制、采样时间控制等。 3. 启动转换:配置完成后,可以启动AD转换,即向ADC模块发送启动转换的命令。 4. 等待转换完成:启动转换后,需要等待转换完成。在转换完成前,可以进行其他操作。 5. 读取转换结果:转换完成后,可以通过读取ADC模块的数据寄存器来获取转换结果。转换结果是一个数字,表示模拟信号的大小。 6. 处理转换结果:获取转换结果后,可以进行相应的处理,如进行数据缩放、滤波、平均等操作。 以上是GD32F103CBT6进行AD转换的基本流程,需要根据具体的应用场景进行相应的配置和处理。

相关推荐

最新推荐

recommend-type

GD32F10x_yonghushouce_Rev2.5.pdf GD32F10x_用户手册 中文

存储器映射是指将存储器地址空间映射到物理存储器地址空间的过程,GD32F10x 微控制器的存储器映射机制可以根据不同的应用场景进行配置。 引导配置 GD32F10x 微控制器的引导配置是指微控制器启动时的配置过程。在...
recommend-type

GD32系列微控制器入门开发指南 V1.0.pdf

GD32系列微控制器入门开发指南 目录 1.GD32 MCU开发资料下载 2.GD32 MCU开发环境搭建 3.GD32 MCU烧录说明 4.固件库使用方法和启动流程介绍 5.GD32 MCU常见外设介绍 6.GD32 MCU FPU使用方法 7.GD32 MCU选项字节设置及...
recommend-type

GD32选型-GD32-Series-of-MCUs-Selection-Guide(Mar-2022)

选型表 备份用 http://www.gd32mcu.com/cn/download/9?kw=GD32F1
recommend-type

GD32F207xx_Datasheet_Rev2.0.pdf

GD32F2采用2.6V-3.6V电源,I/O口可承受5V电平。支持高级电源管理并具备三种省电模式。在外部电池供电情况下,内置的高精度可校准实时时钟(RTC)运行时的待机电流低于1uA。支持三相PWM互补输出和霍尔采集接口的2个16位...
recommend-type

GD32F10x_gujiankushiyongzhinan_Rev2.0.pdf GD32F10x_固件库使用手册 中文

- 编译与烧录:完成代码编写后,编译生成可执行文件,并将其烧录到GD32F10x芯片中。 5. **注意事项** - 在使用过程中,应遵循库文档的建议,如正确配置时钟系统、管理中断、避免内存冲突等,以确保程序的稳定性和...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。