首页
hyperspectral classification
hyperspectral classification
时间: 2023-05-01 17:05:55
浏览: 102
Q: 什么是高光谱分类? A: 高光谱分类是一种利用遥感图像数据进行地物分类的技术。该技术使用多光谱波段的信息,准确地将地表特征按照类别进行分类,并识别不同类型的物质。高光谱分类被广泛应用于农业、森林、环境监测、气象等领域。
阅读全文
相关推荐
classification of hyperspectral image data
In this paper, we propose a new framework for spectral–spatial classification of hyperspectral image data
Hyperspectral-Image-Classification
高光谱图像分类 Arch.py-包含卷积神经网络的实现 其他文件-用于预处理。
hyperspectral-image-classification-cnn
高光谱图像分类 #2018-7-2使用1d-cnn和2d-cnn进行研究生论文的高光谱图像分类。 #功能交替训练方法
Composite kernel for hyperspectral classification tools
为了解决这个问题,“Composite kernel for hyperspectral classification tools”(复合核用于高光谱分类工具)是一种有效的解决方案。 复合核方法是机器学习中的一个重要概念,特别是在支持向量机(SVM)等分类...
Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification
文章标题《Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification》和描述提到了一种用于高光谱分类的技术——利用深度学习学习和转移联合光谱-空间特征。这项技术...
A deep network based on multiscale spectral-spatial fusion for Hyperspectral Classification
### 基于多尺度光谱空间融合的深度网络在高光谱图像分类中的应用 #### 概述 ...高光谱图像拥有连续数百个光谱带和高度的空间相关性,这使得它能够携带丰富的光谱和空间信息,非常有利于不同材料的分类。...
Hyperspectral Image Classification via Basic Thresholding Classifier:Hyperspectral Image Classification via Basic Thresholding Classifier-matlab开发
抽象的: 我们提出了一种基于稀疏性的轻量级算法,即基本阈值分类器 (BTC),用于高光谱图像 (HSI) 分类。 BTC 是一个逐像素分类器,它仅使用给定测试像素的光谱特征。 它使用由标记的训练像素组成的预定字典执行分类...
论文学习-IMPROVING HYPERSPECTRAL IMAGE CLASSIFICATIONWITH UNSU
这篇论文探讨的是如何利用无监督学习来改进高光谱图像(Hyperspectral Image, HSI)的分类性能。高光谱图像拥有丰富的光谱信息,这使得它们在遥感、环境监测等领域有着广泛的应用。然而,传统的HSI分类模型,如基于...
Hyperspectral Image Classification -- Traditional to Deep Model
这种技术产生的图像,即超光谱图像(Hyperspectral Images, HSI),具有数百个窄带通道,提供了对地物物理特性更深入的理解。超光谱图像分类是遥感数据分析中的一个重要任务,旨在将图像中的像素分为不同的类别,如...
Hyperspectral Image Classification -- Traditional to Deep Mod
在当前的计算机视觉领域,高光谱图像分类(Hyperspectral Image Classification,HSIC)已经成为一项关键的技术,尤其在遥感、环境监测、农业、矿物识别等领域具有广泛应用。传统机器学习方法在处理高光谱图像时面临...
Hyperspectral image classification based on spectral-spatial feature extraction
本文介绍了一种基于光谱-空间特征提取的新型高光谱图像(Hyperspectral Image, HSI)分类算法。该方法首先通过主成分分析(Principal Component Analysis, PCA)对原始数据进行降维处理,然后利用Gabor变换提取光谱-...
Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification
Kernel sparse representation classification (KSRC), a nonlinear extension of sparse representation classification, shows its good performance for hyperspectral image classification. However, KSRC only...
A multiclassifier and decision fusion system for hyperspectral image classification
In this paper, a windowed three-dimensional discrete wavelet transform (3DDWT) is employed to extract spectral-spatial features for hyperspectral image classification; these features quantify local ...
Hyperspectral Image Classification via Local Receptive Fields Based Random Weights Networks
首先,“Hyperspectral Image Classification”指的是高光谱图像分类,这是遥感技术中的一种应用,用于识别和分析遥感图像中的物质。高光谱图像(HSI)涵盖了数百个波段的光谱信息,与传统的多光谱图像相比,提供了...
Convolutional Neural Networks Based Hyperspectral Image Classification Method with Adaptive Kernels
高光谱图像(Hyperspectral Image,HSI)具有丰富的光谱信息,可以捕捉到从可见光到红外区域的连续光谱,为每个像素点提供了数十到数百个波段的信息,这对于许多视觉相关应用来说是十分重要的,例如在遥感、矿物勘探...
Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation
Sparse representation has been demonstrated to be a powerful tool in classification of hyperspectral images (HSIs). The spatial context of an HSI can be exploited by first defining a local region for ...
Unsupervised hyperspectral image classification algorithm by integrating spatial-spectral information
An integrated spatial-spectral information algorithm for hyper spectral image classification is proposed, which uses spatial pixel association (SPA)by exploiting spectral information divergence (SID),...
Hyperspectral Image Classification Using Kernel Sparse Representation and Semilocal Spatial Graph Regularization
This letter presents a postprocessing algorithm for a kernel sparse representation (KSR)-based hyperspectral image classifier, which is based on the integration of spatial and spectral information....
Paper Reading — 《Spectral-Spatial Attention Networks for Hyperspectral Image Classification》
《Spectral-Spatial Attention Networks for Hyperspectral Image Classification》这篇论文探讨了如何利用深度学习中的注意力机制提升高光谱图像分类的性能。高光谱图像(Hyperspectral Images, HSI)拥有丰富的...
Hyperspectral Image Classification by Spatial-Spectral Derivative-Aided Kernel Joint Sparse Representation
### 高光谱图像分类:基于空间-光谱导数辅助核联合稀疏表示方法 #### 背景与概述 高光谱成像技术在遥感领域内扮演着极其重要的角色,它能够提供丰富的光谱信息,对于精确地识别地表物质具有独特的优势。...
CSDN会员
开通CSDN年卡参与万元壕礼抽奖
海量
VIP免费资源
千本
正版电子书
商城
会员专享价
千门
课程&专栏
全年可省5,000元
立即开通
全年可省5,000元
立即开通
最新推荐
高速公路路面裂缝焊接材料及设备.pdf
高速公路路面裂缝焊接材料及设备
Twinkle Tray:轻松一招,多屏亮度管理
资源摘要信息:"Twinkle Tray 让您轻松管理多台显示器的亮度级别" 在当今的数字化工作环境中,拥有多台显示器已经成为许多用户的常态。这为用户提供了更为宽敞的视野和更高的工作空间灵活性。然而,管理多台显示器的亮度设置一直是一个挑战,因为操作系统的原生功能往往不足以满足用户的需求。Windows 10作为目前广泛使用的操作系统之一,虽然提供了调整大多数显示器背光的功能,但却存在诸多限制,尤其是对于连接的外部显示器来说,Windows 10通常不支持调整其亮度。这就是“Twinkle Tray”应用程序出现的背景。 “Twinkle Tray”是一款旨在简化多显示器亮度管理的应用程序。通过在系统托盘中添加一个图标,用户可以方便地访问并调整所有兼容显示器的亮度级别。这个应用程序的特点可以归纳为: 1. 系统托盘集成:Twinkle Tray 在系统托盘中添加了一个亮度滑块,这一设计模仿了Windows 10内置的音量控制面板,使其直观且易于使用。 2. 背光标准化:应用程序可以对不同显示器的背光进行标准化,确保在进行屏幕间切换时视觉体验保持一致。 3. 自动亮度调节:根据一天中的时间自动改变显示器的亮度,有助于减少眼睛疲劳并提升能效。 4. 与Windows 10无缝融合:Twinkle Tray与Windows 10深度集成,可以使用用户的个性化设置来匹配任务栏,保持用户界面的一致性。 5. 随Windows启动:Twinkle Tray设置为与Windows 10一同启动,确保用户在开机后能够立即使用该软件调整显示器亮度。 技术实现方面,“Twinkle Tray”应用程序是利用现代网络技术与系统API相结合的方式构建的。具体使用了以下技术组件: - Electron:一个使用JavaScript、HTML和CSS等网页技术来创建跨平台的桌面应用程序的框架。 - Node.js:一个基于Chrome V8引擎的JavaScript运行环境,允许开发者使用JavaScript编写服务器端应用程序。 - node-ddcci:一个Node.js模块,用于实现DDC/CI(Display Data Channel Command Interface)协议,该协议用于计算机与显示器之间的通信。 - wmi-client:一个Node.js模块,允许访问Windows Management Instrumentation (WMI),这是Windows系统中用于管理系统信息和控制的一种技术。 - win32-displayconfig:一个Windows平台的库,提供了直接控制显示器配置的接口。 用户可以通过twinkletray.com网站或者发布页面下载“Twinkle Tray”的最新版本。下载完成后,用户将运行一个安装程序EXE,安装完成后,系统托盘会显示Twinkle Tray图标。用户单击该图标后会显示“调整亮度”面板,通过该面板可以进行亮度设置;单击面板以外的地方可以隐藏它。右键单击系统托盘图标还会提供更多选项和设置,使用户能够精细调整应用程序的行为。 标签“Miscellaneous”(杂项)表明,该应用程序虽然专门针对显示器亮度管理,但也可以视为多功能工具箱中的一部分,因为它通过提供与系统紧密集成的便利工具来增强用户的多显示器使用体验。 总之,对于那些需要在多显示器设置中保持高效和舒适体验的用户来说,“Twinkle Tray”应用程序提供了一种便捷的解决方案,可以有效地解决Windows 10在多显示器亮度管理方面存在的不足。
管理建模和仿真的文件
管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
【STS8200系统集成指南】:将STS8200无缝融入任何现有系统
![【STS8200系统集成指南】:将STS8200无缝融入任何现有系统](https://5.imimg.com/data5/SELLER/Default/2020/10/IJ/TE/RX/5414966/siemens-sitop-power-supply-psu8200-3-phase-1000x1000.jpg) 参考资源链接:[STS8200编程手册v3.21:ATE开发必备](https://wenku.csdn.net/doc/6401ab9acce7214c316e8d7d?spm=1055.2635.3001.10343) # 1. STS8200系统集成概述 在信息技术
在自动化装配线上,如何根据不同的应用场景选择合适的机器视觉对位引导技术以实现高精度定位?请结合Cognex、Halcon、OpenCV以及机器人运动控制进行说明。
在面对自动化装配线的高精度定位需求时,选择合适的机器视觉对位引导技术至关重要。首先,我们需要根据装配线的具体应用环境和目标精度要求来选择技术方案。例如,在只需要单个工件定位的应用场景中,可以考虑使用Cognex视觉系统,它提供了强大的图像处理能力和丰富的视觉工具库,适合快速开发和部署。对于更复杂的多工件或动态环境,Halcon的高级算法能够提供更精确的视觉分析,特别是在处理复杂光照条件和不规则形状物体时表现出色。 参考资源链接:[机器视觉对位引导技术详解](https://wenku.csdn.net/doc/7don5ccveb?spm=1055.2569.3001.10343) Ope
WHOIS-Python-Bot:自动抓取WHOIS信息的Python脚本
资源摘要信息:"WHOIS-Python-Bot:https" 知识点概述: 根据提供的文件信息,我们可以推断出以下知识点: 1. WHOIS协议与域名信息检索 2. Python编程语言在网络请求与自动化中的应用 3. 文件和目录管理在Python项目中的实践 4. HTTP协议与网络请求的基本概念 5. 使用Python创建项目目录的步骤与方法 详细知识点: 1. WHOIS协议与域名信息检索: WHOIS是一个互联网标准协议,用于查询数据库以获取域名、IP地址或自治系统的所有者等信息。WHOIS服务允许用户查询域名的注册数据,这些数据包括注册人、注册机构、联系信息、注册日期、到期日期和状态等。WHOIS-Python-Bot可能指的是一个使用Python编程语言编写的自动化脚本或机器人,旨在通过WHOIS协议查询域名相关信息。 2. Python编程语言在网络请求与自动化中的应用: Python作为一种高级编程语言,因其简洁的语法、强大的库支持和广泛的应用场景,非常适合用于网络编程和自动化任务。在处理WHOIS查询时,Python可以利用其标准库如urllib或第三方库如requests来发送网络请求,并解析返回的数据。Python还提供了一些用于自动化和网络操作的工具,比如BeautifulSoup用于解析HTML和XML文档,以及Scrapy用于网络爬虫开发。 3. 文件和目录管理在Python项目中的实践: 文件和目录管理是任何编程项目中的常见任务。在Python项目中,开发者经常需要创建和管理文件和目录,以便组织源代码、配置文件、日志和其他资源。Python提供了一套内建的文件处理函数,比如os模块,允许开发者执行创建目录、删除目录、重命名文件等操作。这对于项目结构的初始化和动态构建非常有用。 4. HTTP协议与网络请求的基本概念: HTTP(超文本传输协议)是互联网上应用最广泛的一种网络协议,是用于从万维网服务器传输超文本到本地浏览器的传输协议。了解HTTP协议的基本概念对于开发网络相关的应用至关重要。例如,HTTP请求和响应的基本结构,包括请求方法(GET、POST、PUT、DELETE等)、状态码、请求头、请求体和响应体。Python通过各种库简化了HTTP请求的发送和处理。 5. 使用Python创建项目目录的步骤与方法: 在Python中创建项目目录是一个简单的过程,通常涉及到使用内置的os模块或pathlib模块。os模块提供了一系列文件操作的函数,比如os.mkdir()用于创建目录。pathlib模块引入了面向对象的文件系统路径操作。使用这些工具,开发者可以轻松地在代码中创建项目所需的目录结构。例如,创建一个名为“文件”的目录,可以使用os.mkdir("文件"),如果目录不存在的话。更好的做法是先检查目录是否已存在,使用os.path.exists()函数,然后再决定是否创建目录。 项目目录创建示例代码: ```python import os # 指定要创建的目录名称 dir_name = "文件" # 检查目录是否存在,如果不存在则创建 if not os.path.exists(dir_name): os.mkdir(dir_name) print(f"目录 '{dir_name}' 创建成功.") else: print(f"目录 '{dir_name}' 已存在.") ``` 通过上述知识点,我们可以对WHOIS-Python-Bot项目及其可能的功能、结构和实现技术有一个大致的了解。项目名称暗示了该项目是一个利用Python编写的网络自动化脚本,可能用于批量查询域名注册信息,并通过HTTP协议将查询结果发送到服务器。此外,项目初始化阶段需要创建特定的目录来存储相关文件和数据。
"互动学习:行动中的多样性与论文攻读经历"
多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
【STS8200跨平台编程攻略】:一次编写,全球运行的终极指南
![【STS8200跨平台编程攻略】:一次编写,全球运行的终极指南](https://media.geeksforgeeks.org/wp-content/uploads/20210706120537/JavaStream.png) 参考资源链接:[STS8200编程手册v3.21:ATE开发必备](https://wenku.csdn.net/doc/6401ab9acce7214c316e8d7d?spm=1055.2635.3001.10343) # 1. STS8200跨平台编程概述 跨平台编程一直是软件开发领域中的热门话题,它允许开发者使用单一的代码库创建能够在多个操作系统上运行
如何利用Matlab与FPGA协同实现一个50Hz的正弦波信号源,并进行时域仿真与频域分析?
在设计50Hz正弦波信号源的过程中,Matlab与FPGA的结合使用能够提供强大的开发和测试平台。以下是实现这一目标的详细步骤: 参考资源链接:[Matlab与FPGA协同:实现50Hz正弦波信号源与仿真](https://wenku.csdn.net/doc/284nbajy2m?spm=1055.2569.3001.10343) 首先,在Matlab环境中,我们需要编写代码来生成所需的正弦波信号。根据正弦波的时域表达式s(t) = sin(2πf_m * t + θ),可以设置参数f_m为50Hz,θ为π/2,峰值电压为1V。采样率fs设置为5kHz,确保一个周期内包含100个采样点,
Mario Kart 64课程代码生成器实现与React应用实践
资源摘要信息:"n64-course-code-generator项目是一个用于创建Mario Kart 64游戏中的随机可变长度大奖赛课程代码的生成器。它基于层列表定义的首选项生成代码,为用户提供自定义游戏体验的可能性。" 知识点: 1. **Mario Kart 64**: Mario Kart 64是一款由任天堂开发的经典赛车游戏,于1996年首次发布。这款游戏以马里奥系列角色作为赛车手,并且具有经典的赛车游戏玩法和多人模式。 2. **课程代码生成器**: 这个生成器是一个用于在Mario Kart 64游戏中创建自定义赛道的工具。"课程代码"通常指的是将赛道的布局、道具、障碍物和特殊规则等编码为一组指令,然后玩家可以在游戏中输入这组代码以加载特定的自定义赛道。生成器能够根据用户的设定随机生成不同的赛道布局。 3. **层列表**: 在此上下文中,层列表很可能是对赛道设计的一种抽象表示方法,其中包括不同的赛道元素(如道具、障碍物等)和它们在赛道上的位置。层列表可能是一种用于定义赛道不同层(例如地面层、水层、道具层等)的结构化数据。 4. **随机可变长度的大奖赛**: 指的是生成器创建的大奖赛课程可以根据特定的参数随机变化,长度也可以根据用户的设定进行调整,从而实现高度的可定制性。大奖赛可能是指在游戏中,为了决定超级大奖赛的赛道和规则而进行的一系列预选赛。 5. **Create React App**: 这是一个由Facebook提供的用于简化现代Web应用开发的脚手架工具。它提供了一个零配置的开发环境,使得开发者能够快速启动和运行React应用。 6. **脚本运行**: Create React App支持多种npm脚本来管理开发流程。例如: - `npm start`:用于在开发模式下启动应用程序,允许开发者实时预览改动。 - `npm test`:用于在交互式监视模式下运行测试,以便开发者可以查看测试覆盖率和反馈。 - `npm run build`:用于构建生产版本的应用程序,生成的文件会被压缩和优化,以便部署到生产环境中。 - `npm run eject`:这是一个不可逆操作,它会将所有的配置文件和依赖从Create React App脚手架中导出到项目目录中,使开发者能够完全控制构建配置。 7. **TypeScript**: TypeScript是JavaScript的一个超集,它增加了静态类型定义的功能。TypeScript最终会被编译成普通的JavaScript代码,以提供类型检查、更好的IDE支持、代码重构等特性。本项目使用TypeScript可能是为了提高代码的可维护性和减少运行时错误。 8. **文件名称列表**: "n64-course-code-generator-main"表示该项目的主要文件夹或模块名称。这通常是项目的主入口,包含了启动项目所需的大部分重要代码和资源文件。