class DWConv(Conv): # Depth-wise convolution class def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)

时间: 2023-06-20 14:03:50 浏览: 99
这是一个深度可分离卷积(Depth-wise Separable Convolution)的实现类,它继承了一个普通卷积的类 Conv。深度可分离卷积是一种轻量级卷积操作,通常用于深度学习中的计算机视觉任务。相比于普通卷积,深度可分离卷积可以将计算量大幅减少,从而加速模型的训练和推理。 具体地,深度可分离卷积包含两个步骤:深度卷积和逐点卷积。深度卷积是指对每个输入通道单独进行卷积操作,得到一个与输入通道数相同的中间特征图。逐点卷积是指对中间特征图的每个像素点单独进行卷积操作,得到最终的输出特征图。这种卷积方法可以大幅度减少计算量,同时还能有效地提高模型的表现力。
相关问题

class SE_Block(nn.Module): # Squeeze-and-Excitation block def __init__(self, in_planes): super(SE_Block, self).__init__() self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.conv1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.avgpool(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) out = self.sigmoid(x) return out 将以上代码改成keras格式

在Keras中实现SE_Block可以如下所示: ```python from keras.layers import AveragePooling2D, Conv2D, ReLU, Activation, Multiply, GlobalAveragePooling2D class SE_Block(keras.layers.Layer): def __init__(self, in_planes): super(SE_Block, self).__init__() self.avgpool = AveragePooling2D(pool_size=(1, 1)) self.conv1 = Conv2D(in_planes // 16, kernel_size=1) self.relu = ReLU() self.conv2 = Conv2D(in_planes, kernel_size=1) self.sigmoid = Activation('sigmoid') def call(self, x): x = self.avgpool(x) x = self.conv1(x) x = self.relu(x) x = self.conv2(x) out = self.sigmoid(x) return Multiply()([out, x]) ``` 需要注意的是,Keras的Layer和Module有一些差别,因此代码中做了一些相应的改动。同时,由于Keras中没有提供直接的Sigmoid激活函数的Layer,因此使用了Activation('sigmoid')替代。另外,SE_Block的输出需要与输入进行相乘,因此在Keras中使用了Multiply()函数实现。

请分析这段代码class GhostBottleneck(nn.Module): """ Ghost bottleneck w/ optional SE""" def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3, stride=1, act_layer=nn.ReLU, se_ratio=0.): super(GhostBottleneck, self).__init__() has_se = se_ratio is not None and se_ratio > 0. self.stride = stride # Point-wise expansion self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) # Depth-wise convolution if self.stride > 1: self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False) self.bn_dw = nn.BatchNorm2d(mid_chs) # Squeeze-and-excitation if has_se: self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio) else: self.se = None # Point-wise linear projection self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) # shortcut if (in_chs == out_chs and self.stride == 1): self.shortcut = nn.Sequential() else: self.shortcut = nn.Sequential( nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False), nn.BatchNorm2d(in_chs), nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), nn.BatchNorm2d(out_chs), ) def forward(self, x): residual = x # 1st ghost bottleneck x = self.ghost1(x) # Depth-wise convolution if self.stride > 1: x = self.conv_dw(x) x = self.bn_dw(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # 2nd ghost bottleneck x = self.ghost2(x) x += self.shortcut(residual) return x

这段代码定义了一个名为GhostBottleneck的类,继承自nn.Module。该类实现了一个带有可选Squeeze-and-excitation (SE)的Ghost bottleneck。 在初始化方法中,它接受一些参数,包括输入通道数(in_chs)、中间通道数(mid_chs)、输出通道数(out_chs)、深度卷积核大小(dw_kernel_size)、步长(stride)、激活函数(act_layer)和SE比率(se_ratio)。它首先判断是否需要SE操作,并保存步长。然后,它定义了以下组件: - ghost1: 一个GhostModule,用于进行点卷积扩展,将输入通道数扩展到中间通道数。 - conv_dw和bn_dw: 如果步长大于1,则定义了一个深度卷积层和对应的批归一化层,用于进行深度卷积操作。 - se: 如果需要SE操作,则定义了一个SqueezeExcite模块,用于进行Squeeze-and-excitation操作。 - ghost2: 一个GhostModule,用于将中间通道数缩减到输出通道数。 - shortcut: 根据输入通道数和输出通道数以及步长的不同情况,定义了不同的shortcut结构。如果输入通道数等于输出通道数且步长为1,则shortcut为空;否则,shortcut由一系列卷积层和批归一化层组成。 在前向传播方法中,首先保存输入的残差,然后按照以下顺序进行操作: - 使用ghost1进行第一个ghost bottleneck操作,将输入x转换为中间特征x。 - 如果步长大于1,则使用conv_dw和bn_dw进行深度卷积操作。 - 如果需要SE操作,则使用se进行Squeeze-and-excitation操作。 - 使用ghost2进行第二个ghost bottleneck操作,将中间特征x转换为输出特征x。 - 将残差与shortcut结果相加得到最终输出x。 该GhostBottleneck类实现了一种特殊的残差块结构,通过使用GhostModule和深度卷积、SE等操作,实现了通道数的扩展和缩减,并在残差连接中处理了不同通道数和步长的情况。这种结构常用于一些深度学习模型中的卷积层。

相关推荐

最新推荐

recommend-type

关于keras.layers.Conv1D的kernel_size参数使用介绍

主要介绍了关于keras.layers.Conv1D的kernel_size参数使用介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

主要介绍了Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。