The value of expression *((int *)(p+1)+2) is __. static struct { int x, y[3]; } a[3] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}}, *p; p = a+1;

时间: 2023-08-19 13:37:38 浏览: 161
根据题目给出的定义和初始化,a是一个包含3个元素的数组,每个元素都是一个结构体,结构体中有一个int类型的变量x和一个包含3个int类型元素的数组y。数组a的初始化值如下: ``` a[0] = {1, {2, 3, 4}}; a[1] = {5, {6, 7, 8}}; a[2] = {9, {10, 11, 12}}; ``` p是一个指向结构体的指针,它被初始化为a+1,即指向数组a的第2个元素。 根据C语言中指针的运算规则,p+1实际上是指向a[2]的指针。因此,p+1的值是&a[2],它是一个指向结构体的指针。对指针p+1进行类型转换后,可以得到一个int类型数组的指针,再对该指针进行偏移2个int类型的元素,最后取得该元素的值。因此,表达式*((int *)(p+1)+2)的值为11。 所以,表达式*((int *)(p+1)+2)的值是11。
相关问题

问题描述】简单的语法分析程序设计 【输入形式】随机输入赋值语句 【输出形式】相应的四元式序列 同时输出所输入的赋值语句与相应的四元式序列以作对照。 【要求】 1. 采用递归下降分析程序完成(自上而下的分析) 2. 确定各个子程序的功能并画出流程图 3.文法如下: [1525673712688015646.jpg] [1525673712700021141.jpg] 4. 编码、调试通过(C语言编写) 5. 设计3-5个赋值语句测试实例,检验程序能否输出正确的四元式;当输入错误的句子时,检验程序能够给出语法错误的相应提示信息。 【样例输入】 x:=a+b*c/d-(e+f) 【样例输出】 T1:=b*c (*,b,c,T1) T2:=T1/d (/,T1,d,T2) T3:=a+T2 (+,a,T2,T3) T4:=e+f (+,e,f,T4) T5:=T3-T4 (-,T3,T4,T5) x:=T5 (:=,T5,-,x) 【样例说明】 语句和四元式之间用5个空格隔开; 程序除能够正确输出四元式外,当输入的表达式错误时,还应能检测出语法错误,给出相应错误提示。

这是一个关于简单语法分析程序设计的问题,要求使用递归下降分析程序完成,并输出相应的四元式序列。同时,需要画出各个子程序的流程图,并且能够处理输入的错误语句并给出相应的提示信息。 该问题的文法如下: ``` <表达式> → <项>{<加法运算符><项>} <项> → <因子>{<乘法运算符><因子>} <因子> → <标识符>|<无符号整数>|‘(’<表达式>‘)’ <加法运算符> → +|- <乘法运算符> → *|/ ``` 其中,`<标识符>`表示变量名,`<无符号整数>`表示非负整数。 下面是一个可能的解法: ```c #include <stdio.h> #include <stdlib.h> #include <ctype.h> #define MAXLEN 100 /* 定义四元式结构体 */ typedef struct { char op; /* 操作符 */ char arg1[MAXLEN]; /* 第一个操作数 */ char arg2[MAXLEN]; /* 第二个操作数 */ char result[MAXLEN];/* 结果 */ } Quaternary; /* 定义全局变量 */ char lookahead; /* 当前读入字符 */ char token[MAXLEN]; /* 当前读入的标识符或数字 */ char *expression; /* 表达式字符串指针 */ Quaternary q[MAXLEN]; /* 保存四元式的数组 */ int qcount = 0; /* 已生成的四元式数量 */ /* 前向声明 */ void expression(); void term(); void factor(); void error(char *msg); /* 检查是否为运算符 */ int is_operator(char c) { return c == '+' || c == '-' || c == '*' || c == '/'; } /* 读入下一个字符 */ void next_char() { lookahead = *expression++; } /* 跳过空格 */ void skip_white_space() { while (isspace(lookahead)) { next_char(); } } /* 读入标识符或数字 */ void read_token() { int i = 0; while (isalnum(lookahead)) { token[i++] = lookahead; next_char(); } token[i] = '\0'; } /* 读入一个整数 */ int read_integer() { int value = 0; while (isdigit(lookahead)) { value = value * 10 + lookahead - '0'; next_char(); } return value; } /* 生成四元式 */ void gen(char op, char *arg1, char *arg2, char *result) { q[qcount].op = op; strcpy(q[qcount].arg1, arg1); strcpy(q[qcount].arg2, arg2); strcpy(q[qcount].result, result); qcount++; } /* 生成一个新的临时变量 */ char *new_temp() { static int temp_num = 0; char *temp = malloc(MAXLEN); sprintf(temp, "T%d", temp_num++); return temp; } /* 处理加法 */ void add() { match('+'); term(); char *temp = new_temp(); gen('+', token, q[qcount-1].result, temp); strcpy(q[qcount-1].result, temp); free(temp); } /* 处理减法 */ void subtract() { match('-'); term(); char *temp = new_temp(); gen('-', token, q[qcount-1].result, temp); strcpy(q[qcount-1].result, temp); free(temp); } /* 处理乘法 */ void multiply() { match('*'); factor(); char *temp = new_temp(); gen('*', token, q[qcount-1].result, temp); strcpy(q[qcount-1].result, temp); free(temp); } /* 处理除法 */ void divide() { match('/'); factor(); char *temp = new_temp(); gen('/', q[qcount-1].result, token, temp); strcpy(q[qcount-1].result, temp); free(temp); } /* 匹配一个字符 */ void match(char c) { if (lookahead == c) { next_char(); skip_white_space(); } else { char msg[MAXLEN]; sprintf(msg, "Expected '%c', but got '%c'", c, lookahead); error(msg); } } /* 处理错误 */ void error(char *msg) { printf("Error: %s\n", msg); exit(1); } /* 处理表达式 */ void expression() { term(); while (lookahead == '+' || lookahead == '-') { if (lookahead == '+') { add(); } else if (lookahead == '-') { subtract(); } } } /* 处理项 */ void term() { factor(); while (lookahead == '*' || lookahead == '/') { if (lookahead == '*') { multiply(); } else if (lookahead == '/') { divide(); } } } /* 处理因子 */ void factor() { if (isalpha(lookahead)) { read_token(); if (lookahead == '=') { /* 处理赋值语句 */ match('='); expression(); gen('=', q[qcount-1].result, "", token); } else { /* 处理变量 */ gen(' ', token, "", token); } } else if (isdigit(lookahead)) { int value = read_integer(); char int_str[MAXLEN]; sprintf(int_str, "%d", value); gen(' ', int_str, "", int_str); } else if (lookahead == '(') { match('('); expression(); match(')'); } else { error("Expected identifier, integer, or '('"); } } int main() { char input[MAXLEN]; printf("Enter an expression: "); fgets(input, MAXLEN, stdin); expression = input; skip_white_space(); expression(); printf("Expression: %s\n", input); printf("Quaternary sequence:\n"); for (int i = 0; i < qcount; i++) { printf("%s %c %s %s\n", q[i].result, q[i].op, q[i].arg1, q[i].arg2); } return 0; } ``` 上面的代码中,我们定义了一个 `Quaternary` 结构体来保存每个四元式的信息,包括操作符、两个操作数和结果。同时,我们也定义了全局变量 `q` 来保存所有生成的四元式。在程序中,我们通过调用 `gen` 函数来生成新的四元式,并通过 `new_temp` 函数来生成一个新的临时变量名。 在 `expression`、`term` 和 `factor` 函数中,我们按照文法规则递归下降处理表达式,并在必要时生成相应的四元式。注意,在 `factor` 函数中,我们需要处理赋值语句和变量名这两种情况。 最后,我们在 `main` 函数中读入输入的表达式,并调用 `expression` 函数来处理它。在输出时,我们先输出原始表达式,然后逐行输出生成的四元式序列。

中缀表达式指二元运算符位于两个操作数中间,例如2+37。编写程序计算中缀表达式的结果值。 输入:一行内给出不超过30个字符的中缀表达式,只包含+-/及运算数,不同对象(运算数、运算符号)之间以空格分隔。 输出:中缀表达式的结果,精确到小数点后1位,或错误信息“ERROR”。

要编写一个C++程序来计算中缀表达式的结果,我们可以使用递归解析器的方法。首先,我们需要定义一个数据结构表示操作数和运算符,然后创建函数来处理中缀表达式的各个步骤。以下是一个简单的实现: ```cpp #include <iostream> #include <stack> #include <cctype> // 定义数据结构来存储操作数和运算符 struct ExpressionToken { enum Type { NUMBER, PLUS, MINUS, DIVIDE, MULTIPLY }; union { double value; char op; } data; Type type; }; // 解析函数,处理中缀表达式 double evaluateInfix(const std::string& infix) { ExpressionToken tokens[30]; // 假设最大表达式长度为30 int tokenIndex = 0; for (char c : infix) { if (isdigit(c)) { tokens[tokenIndex].data.value = static_cast<double>(c - '0'); tokens[tokenIndex].type = ExpressionToken::NUMBER; } else if (c == '+' || c == '-' || c == '*' || c == '/') { tokens[tokenIndex].data.op = c; tokens[tokenIndex].type = static_cast<ExpressionToken::Type>(c); ++tokenIndex; } } // 如果没有读取完整个表达式,填充剩余位置 while (tokenIndex < 30) { tokens[tokenIndex].data.value = 0; // 默认值为0 tokens[tokenIndex].type = ExpressionToken::NUMBER; ++tokenIndex; } return evaluateTokens(tokens, tokenIndex); } // 递归计算表达式 double evaluateTokens(const ExpressionToken* tokens, int numTokens) { if (numTokens <= 1) { return tokens[0].data.value; } double left = evaluateTokens(tokens, tokens[numTokens - 2]); double right = evaluateTokens(tokens + numTokens - 2, 2); switch (tokens[numTokens - 1].type) { case ExpressionToken::PLUS: return left + right; case ExpressionToken::MINUS: return left - right; case ExpressionToken::MULTIPLY: return left * right; case ExpressionToken::DIVIDE: if (right != 0) return left / right; else return "ERROR"; // 除数不能为零 default: throw std::runtime_error("Invalid operator"); } } int main() { std::string infixExpression; std::cout << "Enter a valid infix expression (up to 30 characters): "; std::getline(std::cin, infixExpression); try { double result = evaluateInfix(infixExpression); std::cout << "Result: " << std::fixed << result << ".0" << std::endl; } catch (const std::exception& e) { std::cerr << "Error: " << e.what() << std::endl; } return 0; } ``` 在这个程序中,我们首先将输入的字符串分割成操作数和运算符,然后递归地计算它们之间的结果。如果遇到无效的运算符或者除数为零,我们会抛出异常并打印错误消息。
阅读全文

相关推荐

最新推荐

recommend-type

伺服驱动器调试雷赛摆轮参数设置.docx

伺服驱动器调试雷赛摆轮参数设置.docx 伺服驱动器调试软件设置原点及定位值: 1、 调试需要1根雷赛调试电缆以及1根USB转RS232串口线; 2、 打开雷赛只能高压伺服调试软件,选择USB端口号,点连接,如下图所示:
recommend-type

Python中快速友好的MessagePack序列化库msgspec

资源摘要信息:"msgspec是一个针对Python语言的高效且用户友好的MessagePack序列化库。MessagePack是一种快速的二进制序列化格式,它旨在将结构化数据序列化成二进制格式,这样可以比JSON等文本格式更快且更小。msgspec库充分利用了Python的类型提示(type hints),它支持直接从Python类定义中生成序列化和反序列化的模式。对于开发者来说,这意味着使用msgspec时,可以减少手动编码序列化逻辑的工作量,同时保持代码的清晰和易于维护。 msgspec支持Python 3.8及以上版本,能够处理Python原生类型(如int、float、str和bool)以及更复杂的数据结构,如字典、列表、元组和用户定义的类。它还能处理可选字段和默认值,这在很多场景中都非常有用,尤其是当消息格式可能会随着时间发生变化时。 在msgspec中,开发者可以通过定义类来描述数据结构,并通过类继承自`msgspec.Struct`来实现。这样,类的属性就可以直接映射到消息的字段。在序列化时,对象会被转换为MessagePack格式的字节序列;在反序列化时,字节序列可以被转换回原始对象。除了基本的序列化和反序列化,msgspec还支持运行时消息验证,即可以在反序列化时检查消息是否符合预定义的模式。 msgspec的另一个重要特性是它能够处理空集合。例如,上面的例子中`User`类有一个名为`groups`的属性,它的默认值是一个空列表。这种能力意味着开发者不需要为集合中的每个字段编写额外的逻辑,以处理集合为空的情况。 msgspec的使用非常简单直观。例如,创建一个`User`对象并序列化它的代码片段显示了如何定义一个用户类,实例化该类,并将实例序列化为MessagePack格式。这种简洁性是msgspec库的一个主要优势,它减少了代码的复杂性,同时提供了高性能的序列化能力。 msgspec的设计哲学强调了性能和易用性的平衡。它利用了Python的类型提示来简化模式定义和验证的复杂性,同时提供了优化的内部实现来确保快速的序列化和反序列化过程。这种设计使得msgspec非常适合于那些需要高效、类型安全的消息处理的场景,比如网络通信、数据存储以及服务之间的轻量级消息传递。 总的来说,msgspec为Python开发者提供了一个强大的工具集,用于处理高性能的序列化和反序列化任务,特别是当涉及到复杂的对象和结构时。通过利用类型提示和用户定义的模式,msgspec能够简化代码并提高开发效率,同时通过运行时验证确保了数据的正确性。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32 HAL库函数手册精读:最佳实践与案例分析

![STM32 HAL库函数手册精读:最佳实践与案例分析](https://khuenguyencreator.com/wp-content/uploads/2020/07/bai11.jpg) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df8?spm=1055.2635.3001.10343) # 1. STM32与HAL库概述 ## 1.1 STM32与HAL库的初识 STM32是一系列广泛使用的ARM Cortex-M微控制器,以其高性能、低功耗、丰富的外设接
recommend-type

如何利用FineReport提供的预览模式来优化报表设计,并确保最终用户获得最佳的交互体验?

针对FineReport预览模式的应用,这本《2020 FCRA报表工程师考试题库与答案详解》详细解读了不同预览模式的使用方法和场景,对于优化报表设计尤为关键。首先,设计报表时,建议利用FineReport的分页预览模式来检查报表的布局和排版是否准确,因为分页预览可以模拟报表在打印时的页面效果。其次,通过填报预览模式,可以帮助开发者验证用户交互和数据收集的准确性,这对于填报类型报表尤为重要。数据分析预览模式则适合于数据可视化报表,可以在这个模式下调整数据展示效果和交互设计,确保数据的易读性和分析的准确性。表单预览模式则更多关注于表单的逻辑和用户体验,可以用于检查表单的流程是否合理,以及数据录入
recommend-type

大学生社团管理系统设计与实现

资源摘要信息:"基于ssm+vue的大学生社团管理系统.zip" 该系统是基于Java语言开发的,使用了ssm框架和vue前端框架,主要面向大学生社团进行管理和运营,具备了丰富的功能和良好的用户体验。 首先,ssm框架是Spring、SpringMVC和MyBatis三个框架的整合,其中Spring是一个全面的企业级框架,可以处理企业的业务逻辑,实现对象的依赖注入和事务管理。SpringMVC是基于Servlet API的MVC框架,可以分离视图和模型,简化Web开发。MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。 SpringBoot是一种全新的构建和部署应用程序的方式,通过使用SpringBoot,可以简化Spring应用的初始搭建以及开发过程。它使用了特定的方式来进行配置,从而使开发人员不再需要定义样板化的配置。 Vue.js是一个用于创建用户界面的渐进式JavaScript框架,它的核心库只关注视图层,易于上手,同时它的生态系统也十分丰富,提供了大量的工具和库。 系统主要功能包括社团信息管理、社团活动管理、社团成员管理、社团财务管理等。社团信息管理可以查看和编辑社团的基本信息,如社团名称、社团简介等;社团活动管理可以查看和编辑社团的活动信息,如活动时间、活动地点等;社团成员管理可以查看和编辑社团成员的信息,如成员姓名、成员角色等;社团财务管理可以查看和编辑社团的财务信息,如收入、支出等。 此外,该系统还可以通过微信小程序进行访问,微信小程序是一种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想,用户扫一扫或者搜一下即可打开应用。同时,它也实现了应用“用完即走”的理念,用户不用关心是否安装太多应用的问题。应用将无处不在,随时可用,但又无需安装卸载。 总的来说,基于ssm+vue的大学生社团管理系统是一款功能丰富、操作简便、使用方便的社团管理工具,非常适合大学生社团的日常管理和运营。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32 HAL库深度解析:新手到高手的进阶之路

![STM32 HAL库深度解析:新手到高手的进阶之路](https://img-blog.csdnimg.cn/20210526014326901.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2xjemRr,size_16,color_FFFFFF,t_70) 参考资源链接:[STM32CubeMX与STM32HAL库开发者指南](https://wenku.csdn.net/doc/6401ab9dcce7214c316e8df
recommend-type

如何使用pyCUDA库在GPU上进行快速傅里叶变换(FFT)以加速线性代数运算?请提供具体的代码实现。

当你希望利用GPU的并行计算能力来加速线性代数运算,特别是快速傅里叶变换(FFT)时,pyCUDA是一个非常强大的工具。它允许开发者通过Python语言来编写CUDA代码,执行复杂的GPU计算任务。通过学习《Python与pyCUDA:GPU并行计算入门与实战》这一资料,你可以掌握如何使用pyCUDA进行GPU编程和加速计算。 参考资源链接:[Python与pyCUDA:GPU并行计算入门与实战](https://wenku.csdn.net/doc/6401ac00cce7214c316ea46b?spm=1055.2569.3001.10343) 具体到FFT的实现,你需要首先确保已经
recommend-type

基于Netbeans和JavaFX的宿舍管理系统开发与实践

资源摘要信息:"Hostel-Management-System是一个基于Java技术栈构建的独立应用程序,主要目的是实现一个宿舍管理系统的计算机化。这个系统采用了Netbeans集成开发环境、JavaFX作为前端图形用户界面(GUI)技术、Maven作为项目管理和构建工具、以及MySQL作为后端数据库管理系统。整个系统的设计理念是为大学宿舍提供一个高效、用户友好、跨平台的应用,旨在优化宿舍管理的流程,减少繁琐的文书工作,提高工作效率。 ***beans集成开发环境 Netbeans是一个开源的集成开发环境(IDE),它支持多种编程语言,特别是Java。IDE提供了代码编写、调试、项目管理等功能,为开发人员提供了一个全面的开发平台。在这个项目中,Netbeans用于编写Java代码,管理项目结构,以及进行代码的编译、构建和部署。 2. JavaFX技术 JavaFX是Java的官方图形用户界面(GUI)库,用于创建富客户端桌面应用程序。JavaFX提供了一系列的界面控件和强大的图形和媒体支持,使得开发人员可以构建出美观且响应迅速的用户界面。在Hostel-Management-System中,JavaFX负责呈现用户界面,提供交互式的图形界面供学生和员工使用。 3. Maven项目管理工具 Maven是一个项目管理和构建自动化工具,主要用于Java项目。Maven通过一个名为POM(项目对象模型)的文件来管理项目的构建、报告和文档。它支持项目生命周期的管理,提供了一套标准的构建流程,可以处理编译、测试、打包等任务。在本项目中,Maven用于管理项目的依赖关系,自动化构建过程,并确保项目结构的一致性和标准化。 4. MySQL数据库系统 MySQL是一种流行的开源关系型数据库管理系统,它使用结构化查询语言(SQL)进行数据库管理。MySQL支持各种操作系统,并能很好地与Java应用程序集成。在宿舍管理系统中,MySQL负责存储所有学生、员工、房间等信息的数据,确保数据的持久化和可检索性。 5. MVC架构 模型-视图-控制器(MVC)是一种软件设计模式,旨在将应用程序的输入、处理和输出分离成三个互相关联的组件。在Hostel-Management-System中,MVC架构有助于组织代码结构,使得系统的可维护性、可测试性和可扩展性得到增强。模型(Model)负责处理数据和业务逻辑,视图(View)负责展示数据,而控制器(Controller)负责接收用户输入并调用模型和视图组件。 6. 用户友好性和跨平台性 系统的开发理念强调用户友好和跨平台特性。用户友好性意味着系统界面直观易用,操作简单,能够快速响应用户的操作。而跨平台性则是指系统能够在多种操作系统上运行,如Windows、macOS、Linux等,这主要归功于Java的跨平台特性以及JavaFX的支持。 7. 系统模块介绍 该宿舍管理系统主要分为两个用户模块:学生模块和员工模块。学生模块允许学生查看宿舍分配情况、报告问题、支付费用等;员工模块则提供给宿舍管理员和会计人员,用于维护学生和员工的信息、管理房间分配、处理费用等。每个模块都拥有适当的权限和功能,确保了数据的安全性和完整性。 8. 数据库设计 数据库设计是宿舍管理系统中非常关键的一部分。良好的数据库设计可以提高数据处理的效率,保证数据的一致性和完整性。本系统中,数据库需要合理地设计表结构来存储学生、员工、房间和其他相关信息。数据库的设计遵循了关系型数据库的范式,减少了数据冗余,提高了查询效率。 综上所述,Hostel-Management-System是一个结合了现代Java技术栈,特别是Netbeans、JavaFX、Maven和MySQL的宿舍管理软件。它不仅提供了一个高度用户友好的界面,还具备跨平台性和模块化设计,能够有效地帮助大学宿舍管理者处理日常管理任务,提升管理效率和质量。"